Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

一种模拟节点达西流速的多尺度有限元-有限元模型

谢一凡, 吴吉春, 王益, 叶逾, 谢春红, 鲁春辉

谢一凡, 吴吉春, 王益, 叶逾, 谢春红, 鲁春辉. 一种模拟节点达西流速的多尺度有限元-有限元模型[J]. 岩土工程学报, 2022, 44(1): 107-114. DOI: 10.11779/CJGE202201010
引用本文: 谢一凡, 吴吉春, 王益, 叶逾, 谢春红, 鲁春辉. 一种模拟节点达西流速的多尺度有限元-有限元模型[J]. 岩土工程学报, 2022, 44(1): 107-114. DOI: 10.11779/CJGE202201010
XIE Yi-fan, WU Ji-chun, WANG Yi, YE Yu, XIE Chun-hong, LU Chun-hui. Multiscale finite element-finite element model for simulating nodal Darcy velocity[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 107-114. DOI: 10.11779/CJGE202201010
Citation: XIE Yi-fan, WU Ji-chun, WANG Yi, YE Yu, XIE Chun-hong, LU Chun-hui. Multiscale finite element-finite element model for simulating nodal Darcy velocity[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 107-114. DOI: 10.11779/CJGE202201010

一种模拟节点达西流速的多尺度有限元-有限元模型  English Version

基金项目: 

中央高校基本业务费项目 B210202018

国家自然科学基金面上项目 51879088

国家自然科学基金青年项目 41702243

详细信息
    作者简介:

    谢一凡(1987—),男,副教授,主要从事地下水数值算法方面的研究工作。E-mail:yfxie@hhu.com

    通讯作者:

    鲁春辉, E-mail:clu@hhu.edu.cn

  • 中图分类号: TU46

Multiscale finite element-finite element model for simulating nodal Darcy velocity

  • 摘要: 提出了一种能高效模拟节点达西流速并保证其连续性的多尺度有限元-有限元模型(MSFEM-FEM)。该方法先应用多尺度有限元法(MSFEM)框架改进了Yeh的有限元模型的水头模拟部分以提升效率与精度,再将多尺度网格转化为有限元网格,应用Yeh的有限元框架保证流速的连续性。基于多尺度基函数,MSFEM-FEM能够汲取研究区的全局信息并在粗尺度上高效获得精确的水头解。通过将粗尺度网格转换为有限元网格,MSFEM-FEM能够应用Yeh的有限元框架将水头解中的全局信息导入达西流速,提高达西流速的精度并保证其连续性。在获得粗尺度解后,MSFEM-FEM还能应用多尺度基函数对解进行细尺度重构,从而获得研究区内的细尺度水头与流速。数值模拟结果显示MSFEM-FEM能够高效、精确的求解水头,并能够获得连续、精确的达西流速和流量。
    Abstract: A multi-scale finite element-finite element model (MSFEM-FEM) is proposed, and it can effectively simulate the nodal Darcy velocity and ensure the velocity continuity. The MSFEM-FEM employs the multi-scale finite element method (MSFEM) to replace the head simulation part of the Yeh's finite element model, thus to improve the efficiency and accuracy. Then, the MSFEM-FEM transforms the multi-scale grid to the finite element one, thus, it can directly apply the Yeh's finite element model to obtain continuous Darcy velocity. Based on the multi-scale basis function, the MSFEM-FEM can extract the global information of the study area which allows it to obtain the accurate head solution efficiently on the coarse scale. By transforming the coarse-scale grid into the finite element grid, the MSFEM-FEM can directly employ the Yeh's finite element model to import the global information from the head solution into the Darcy velocity, which can also improve the accuracy of Darcy velocity and ensure the velocity continuity. In addition, the MSFEM-FEM can apply multi-scale basis function to reconstruct the solutions, so as to obtain the fine-scale head and velocity solutions in the study area. The simulated results of two-dimensional groundwater problems show that the MSFEM-FEM can efficiently and accurately solve the head, Darcy velocity and flux, which outperforms the MSFEM and the Yeh's finite element model.
  • 图  1   MSFEM-FEM的研究区Ω的剖分示意图

    Figure  1.   Study region of MSFEM-FEM

    图  2   MSFEM-FEM的粗网格剖分示意图

    Figure  2.   Coarse element of MSFEM-FEM

    图  3   例2.1中各方法模拟的粗尺度达西流速vx的平均相对误差

    Figure  3.   Relative errors of vx calculated by numerical methods in example 2.1

    图  4   例2.1中解析解以及MSFEM-FEM和MSFEM所计算的通过Ω各垂直截面的流量

    Figure  4.   Analytical flux and flux calculated by MSFEM-FEM and MSFEM at vertical sections in Ω in example 2.1

    图  5   例2.2中在截面y=5200 m处的参照解以及MSFEM-FEM和Yeh的数值解水头

    Figure  5.   Reference solution and head calculated by MSFEM-FEM and Yeh at section y=5200 m in example 2.2

    图  6   例2.2中在截面y=5200 m处的MSFEM-FEM和Yeh的数值解达西渗透流速vx的相对误差

    Figure  6.   vx calculated by MSFEM-FEM and Yeh at section y=5200 m in example 2.2

    图  7   例2.3中在截面y=0.6 [L]处的Yeh-F、MSFEM-FEM和Yeh的水头绝对误差

    Figure  7.   Absolute errors of head calculated by Yeh-F, MSFEM-FEM and Yeh at section y=0.6 [L] in example 2.3

    图  8   例2.3中在截面y=0.6 [L]处的解析解以及Yeh-F、MSFEM-FEM和Yeh的数值解vx

    Figure  8.   Analytical solution and vxcalculated by Yeh-F, MSFEM- FEM and Yeh at section y=0.6 [L] in example 2.3

    表  1   例2.1中各方法的水头相对误差

    Table  1   Relative errors of head calculated by numerical methods in example 2.1  (%)

    N AS-Yeh MSFEM-FEM Yeh
    10 0 0.0067 0.161
    20 0 0.0032 0.079
    30 0 0.0010 0.024
    下载: 导出CSV

    表  2   例2.1中MSFEM-FEM与Yeh-F的数值结果对比

    Table  2   Numerical results of MSFEM-FEM and Yeh-F in example 2.1

    方法 水头平均相对误差/% 达西流速平均相对误差/% CPU时间/s
    MSFEM-FEM 0.001 0.33 6
    Yeh-F 0.001 0.02 8530
    下载: 导出CSV
  • [1] 薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175–178.

    XUE Yu-qun, XIE Chun-hong. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007: 175–178. (in Chinese)

    [2]

    YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow [J]. Water Resources Research, 1981, 17(5): 1529–1534. doi: 10.1029/WR017i005p01529

    [3]

    ZHANG Z H, XUE Y Q, WU J C. A cubic-spline technique to calculate nodal Darcian velocities in aquifers[J]. Water Resources Research, 1994, 30(4): 975–98. doi: 10.1029/93WR03416

    [4]

    PARK C H, ARAL M M. Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations[J]. Journal of Contaminant Hydrology, 2007, 92(1/2): 33–49.

    [5]

    SRINIVAS C, RAMASWAMY B, WHEELER M F. Mixed finite element methods for flow through unsaturated porous media[M]// RUSSELL T F, EWING R E, BREBBIA C A, et al, ed. Computational Methods in Water Resources: Numerical Methods in Water Resources. Southampton: Elsevier Applied Science, 1992: 239–246.

    [6]

    D'ANGELO C, SCOTTI A. A mixed finite element method for Darcy flow in fractured porous media with non-matching grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 465–489. doi: 10.1051/m2an/2011148

    [7]

    BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705–1717. doi: 10.1029/WR020i011p01705

    [8] 周杰, 汪德爟. 有限元水流计算中内存和运行效率初探[J]. 水科学进展, 2004, 15(5): 593–597. doi: 10.3321/j.issn:1001-6791.2004.05.010

    ZHOU Jie, WANG De-guan. Exploration on memory requirement and operation efficiency of finite element method in flow calculation[J]. Advances in Water Science, 2004, 15(5): 593–597. (in Chinese) doi: 10.3321/j.issn:1001-6791.2004.05.010

    [9]

    HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169–189. doi: 10.1006/jcph.1997.5682

    [10]

    YE S J, XUE Y Q, XIE C H. Application of the multiscale finite element method to flow in heterogeneous porous media[J]. Water Resources Research, 2004, 40(9): W09202.

    [11] 贺新光, 任理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅰ数值格式[J]. 水利学报, 2009, 40(1): 38–45, 51. doi: 10.3321/j.issn:0559-9350.2009.01.006

    HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media: I Numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38–45, 51. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.01.006

    [13]

    CHEN J, CHUNG E T, HE Z K, et al. Generalized multiscale approximation of mixed finite elements with velocity elimination for subsurface flow[J]. Journal of Computational Physics, 2020, 404: 109133. doi: 10.1016/j.jcp.2019.109133

    [14]

    HE X G, LI Q Q, JIANG L J. A reduced generalized multiscale basis method for parametrized groundwater flow problems in heterogeneous porous media[J]. Water Resources Research, 2019, 55(3): 2390–2406. doi: 10.1029/2018WR023954

    [15] 于军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质, 2007, 34(5): 11–16. doi: 10.3969/j.issn.1000-3665.2007.05.004

    YU Jun, WU Ji-chun, YE Shu-jun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology, 2007, 34(5): 11–16. (in Chinese) doi: 10.3969/j.issn.1000-3665.2007.05.004

    [16] 谢一凡, 吴吉春, 薛禹群, 等. 一种模拟节点达西渗透流速的三次样条多尺度有限单元法[J]. 岩土工程学报, 2015, 37(9): 1727–1732. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509030.htm

    XIE Yi-fan, WU Ji-chun, XUE Yu-qun, et al. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727–1732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509030.htm

    [17] 赵文凤, 谢一凡, 吴吉春. 一种模拟节点达西渗透流速的双重网格多尺度有限单元法[J]. 岩土工程学报, 2020, 42(8): 1474–1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm

    ZHAO Wen-feng, XIE Yi-fan, WU Ji-chun. A dual-mesh multiscale finite element method for simulating nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1474–1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm

图(8)  /  表(2)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  29
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回