• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于顺序组件法的系统可靠度敏感性分析方法

林鑫, 谭晓慧, 董小乐, 杜林枫, 查甫生, 许龙

林鑫, 谭晓慧, 董小乐, 杜林枫, 查甫生, 许龙. 基于顺序组件法的系统可靠度敏感性分析方法[J]. 岩土工程学报, 2022, 44(1): 98-106. DOI: 10.11779/CJGE202201009
引用本文: 林鑫, 谭晓慧, 董小乐, 杜林枫, 查甫生, 许龙. 基于顺序组件法的系统可靠度敏感性分析方法[J]. 岩土工程学报, 2022, 44(1): 98-106. DOI: 10.11779/CJGE202201009
LIN Xin, TAN Xiao-hui, DONG Xiao-le, DU Lin-feng, ZHA Fu-sheng, XU Long. System reliability sensitivity analysis method based on sequential compounding method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 98-106. DOI: 10.11779/CJGE202201009
Citation: LIN Xin, TAN Xiao-hui, DONG Xiao-le, DU Lin-feng, ZHA Fu-sheng, XU Long. System reliability sensitivity analysis method based on sequential compounding method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 98-106. DOI: 10.11779/CJGE202201009

基于顺序组件法的系统可靠度敏感性分析方法  English Version

基金项目: 

国家自然科学基金项目 41972278

国家自然科学基金项目 42030710

国家重点研发计划项目 2019YFC1509903

详细信息
    作者简介:

    林鑫(1997—),男,硕士研究生,主要从事岩土工程的可靠度分析、数值模拟方面的研究工作。E-mail: linxin@mail.hfut.edu.cn

    通讯作者:

    谭晓慧, E-mail: tanxh@hfut.edu.cn

  • 中图分类号: TU470

System reliability sensitivity analysis method based on sequential compounding method

  • 摘要: 岩土工程一般是由多个失效模式组成的复杂系统,且参数的不确定性对岩土工程的失效模式及可靠指标具有重要影响。为了分析参数不确定性对系统可靠度的影响,提出基于顺序组件法的系统可靠度敏感性分析方法(SCMSA)。SCMSA利用SCM组合元件的原理,在计算两元件并联和串联的简单系统可靠度及敏感性的基础上,进一步计算两元件组成的组合元件与系统内其他剩余元件间的等效相关系数,从而达到将两个元件进行组合,简化复杂系统的目的。SCMSA的优点是在系统可靠度分析的同时,融入相对敏感性指标的计算,使得敏感性分析作为可靠度分析的副产品一起算出,且该方法可适用于非正态相关变量的系统可靠度敏感性分析。最后通过简单的数值算例说明SCMSA的计算过程、计算精度及计算优势,并将其应用于半重力式挡土墙的系统可靠度敏感性分析,说明SCMSA可为岩土工程的风险分析与防治提供理论基础。
    Abstract: To analyze the influences of parameter uncertainty on system reliability, a system reliability sensitivity analysis method based on the sequential compounding method (SCMSA) is proposed. The SCMSA makes use of the principle of SCM combination element, and further calculates the equivalent correlation coefficient between the two components and other remaining components in the system on the basis of calculating the reliability and sensitivity of a simple system with two components in parallel or in series, so as to achieve the purpose of combining the two components and simplifying the complex system. The advantage of SCMSA is that it integrates the calculation of the relative sensitivity index into the system reliability analysis, so that the sensitivity analysis can be calculated together as a byproduct of the reliability analysis, and this method can be applied to the system reliability sensitivity analysis of the relative non-normal variables. Finally, a simple numerical example is used to illustrate the calculation process, calculation accuracy and calculation advantage of SCMSA, and it is applied to the sensitivity analysis of a system reliability of semi-gravity retaining wall, indicating that the SCMSA can provide a theoretical basis for the risk analysis and prevention of geotechnical engineering.
  • 图  1   三元件复杂系统示意图

    Figure  1.   Schematic diagram of three-component hybrid system

    图  2   SCMSA的流程图

    Figure  2.   Flow chart of SCMSA

    图  3   五元件复杂系统示意图

    Figure  3.   Schematic diagram of five-component hybrid system

    图  4   五元件混联系统组合过程中的相关系数矩阵

    Figure  4.   Correlation coefficient matrix in combination process of five-component hybrid system

    图  5   SCMSA、CSP以及FDM的系统相对敏感性指标

    Figure  5.   Relative sensitivity indexes of SCMSA, CSP and FDM systems

    图  6   半重力式挡土墙示意图

    Figure  6.   Schematic diagram of semi-gravity retaining wall

    图  7   半重力式挡土墙的元件功能函数及其逻辑关系示意图

    Figure  7.   Schematic diagram of component performance functions and their logic relationship of semi-gravity retaining wall

    图  8   半重力式挡土墙的系统相对敏感性指标

    Figure  8.   System relative sensitivity indexes for semi-gravity retaining wall

    表  1   元件(组合元件)的可靠指标、相对敏感性指标

    Table  1   Reliability and relative sensitivity indexes of components (combination components)

    元件(组合元件) A B C D E
    β(name) 1.556 0.466 1.405 1.118 0.979 0.979 0.944 1.158
    Sμ(name)(1) 0.707 0.380 0.986 0.447 0.213 0.218 0.672 0.413
    Sμ(name)(2) 0.707 0.925 0.169 0.894 0.977 0.956 0.677 0.850
    Sσ(name)(1) −0.778 −0.067 −1.364 −0.224 −0.044 −0.045 −0.659 −0.305
    Sσ(name)(2) −0.778 −0.398 −0.040 −0.894 −0.935 −0.887 −0.629 −0.789
    注:虚线圈为组合元件;实线圈为系统可靠指标及相对敏感性指标计算结果。
    下载: 导出CSV

    表  2   随机变量的概率分布

    Table  2   Probability distribution of random variables

    变量(单位) csoil/kPa φsoil/(°) γsoil/(kN·m-3) γwall/(kN·m-3)
    均值 14 30 21 18.5
    变异系数 0.3 0.1 0.1 0.05
    标准差 4.2 3 2.1 0.925
    分布类型 LN LN LN LN
    注:LN表示对数正态分布。
    下载: 导出CSV
  • [1] 杜永峰, 余钰, 李慧. 重力式挡土墙稳定性的结构体系可靠度分析[J]. 岩土工程学报, 2008, 30(3): 349–353. doi: 10.3321/j.issn:1000-4548.2008.03.007

    DU Yong-feng, YU Yu, LI Hui. Analysis of reliability of structural systems for stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 349–353. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.007

    [2]

    WANG Y. Reliability-based design of spread foundations by Monte Carlo simulations[J]. Géotechnique, 2011, 61(8): 677–685. doi: 10.1680/geot.10.P.016

    [3]

    JOHARI A, RAHMATI H. System reliability analysis of slopes based on the method of slices using sequential compounding method[J]. Computers and Geotechnics, 2019, 114: 103116. doi: 10.1016/j.compgeo.2019.103116

    [4] 谭晓慧, 王建国, 胡晓军, 等. 边坡稳定的模糊随机有限元可靠度分析[J]. 岩土工程学报, 2009, 31(7): 991–996. doi: 10.3321/j.issn:1000-4548.2009.07.002

    TAN Xiao-hui, WANG Jian-guo, HU Xiao-jun, et al. Fuzzy random finite element reliability analysis of slope stability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 991–996. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.07.002

    [5] 宛良朋, 许阳, 李建林, 等. 岩体参数敏感性分析对边坡稳定性评价影响研究——以大岗山坝肩边坡为例[J]. 岩土力学, 2016, 37(6): 1737–1744. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606026.htm

    WAN Liang-peng, XU Yang, LI Jian-lin, et al. Sensitivity analysis of the effect of rock mass parameters on slope stability evaluation: a case study of abutment slope of Dagangshan[J]. Rock and Soil Mechanics, 2016, 37(6): 1737–1744. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606026.htm

    [6]

    CORNELL C A. Bounds on the reliability of structural systems[J]. Journal of the Structural Division, 1967, 93(1): 171–200. doi: 10.1061/JSDEAG.0001577

    [7]

    DITLEVSEN O. Narrow reliability bounds for structural systems[J]. Journal of Structural Mechanics, 1979, 7(4): 453–472. doi: 10.1080/03601217908905329

    [8] 贡金鑫. 工程结构可靠度计算方法[M]. 大连: 大连理工大学出版社, 2003.

    GONG Jin-xin. Computational Methods for Reliability of Engineering Structures[M]. Dalian: Dalian University of Technology Press, 2003. (in Chinese)

    [9]

    PANDEY M D. An effective approximation to evaluate multinormal integrals[J]. Structural Safety, 1998, 20(1): 51–67. doi: 10.1016/S0167-4730(97)00023-4

    [10] 李典庆, 周创兵, 胡冉. 基于n维等效方法的岩质边坡楔体稳定体系可靠度分析[J]. 岩石力学与工程学报, 2009, 28(7): 1415–1424. doi: 10.3321/j.issn:1000-6915.2009.07.015

    LI Dian-qing, ZHOU Chuang-bing, HU Ran. System reliability analysis of rock slope wedge stability based on n-dimensional equivalent method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1415–1424. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.07.015

    [11]

    KANG W, SONG J. Evaluation of multivariate normal integrals for general systems by sequential compounding[J]. Structural Safety, 2010, 32(1): 35–41. doi: 10.1016/j.strusafe.2009.06.001

    [12]

    HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111–121. doi: 10.1061/JMCEA3.0001848

    [13]

    MELCHERS R E, AHAMMED M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Computers & Structures, 2004, 82(1): 55–61.

    [14] 杨杰. 结构可靠度计算方法及灵敏度分析研究[D]. 大连: 大连理工大学, 2012.

    YANG Jie. Research on Structure Reliability Calculation Method and Sensitivity Analysis[D]. Dalian: Dalian University of Technology, 2012. (in Chinese)

    [15] 宋述芳, 吕震宙. 系统可靠性灵敏度分析方法及其应用研究[J]. 机械强度, 2007, 29(1): 53–57. doi: 10.3321/j.issn:1001-9669.2007.01.011

    SONG Shu-fang, LÜ Zhen-zhou. Reliability sensitivity analysis method for structural system and its application[J]. Journal of Mechanical Strength, 2007, 29(1): 53–57. (in Chinese) doi: 10.3321/j.issn:1001-9669.2007.01.011

    [16]

    SUES R H, CESARE M A. System reliability and sensitivity factors via the MPPSS method[J]. Probabilistic Engineering Mechanics, 2005, 20(2): 148–157. doi: 10.1016/j.probengmech.2005.02.001

    [17]

    CHUN J, SONG J, PAULINO G H. Parameter sensitivity of system reliability using sequential compounding method[J]. Structural Safety, 2015, 55: 26–36. doi: 10.1016/j.strusafe.2015.02.001

    [18] 王笑纷, 吴彰敦. 结构体系可靠度分析中二维标准正态分布函数的近似计算[J]. 水力发电学报, 2005, 24(3): 39–43. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200503007.htm

    WANG Xiao-fen, WU Zhang-dun. An approximation to bi-normal probability distribution function in reliability analysis of structural system[J]. Journal of Hydroelectric Engineering, 2005, 24(3): 3943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200503007.htm

    [19]

    BIRNBAUM Z W. Effect of linear truncation on a multinormal population[J]. The Annals of Mathematical Statistics, 1950, 21(2): 272–279. doi: 10.1214/aoms/1177729844

    [20] 秦权, 林道锦, 梅刚. 结构可靠度随机有限元——理论及工程应用[M]. 北京: 清华大学出版社, 2006.

    QIN Quan, LIN Dao-jin, MEI Gang. Theory and Application Reliability Stochastic Finite Element Methods[M]. Beijing: Tsinghua University Press, 2006. (in Chinese)

    [21]

    TAN X H, SHEN M F, JUANG C H, et al. Modified robust geotechnical design approach based on the sensitivity of reliability index[J]. Probabilistic Engineering Mechanics, 2020, 60: 103049. doi: 10.1016/j.probengmech.2020.103049

    [22] 谭晓慧. 边坡稳定的非线性有限元可靠度分析方法研究[D]. 合肥: 合肥工业大学, 2007.

    TAN Xiao-hui. Research on the Method of Nonlinear FEM Reliability Analysis of Slope Stability[D]. Hefei: Hefei University of Technology, 2007. (in Chinese)

    [23]

    LI D Q, ZHANG L, TANG X S, et al. Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability[J]. Computers and Geotechnics, 2015, 68: 184–195. doi: 10.1016/j.compgeo.2015.04.002

图(8)  /  表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  49
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回