Dynamic parameters of lime-improved saline soil under freeze-thaw and different temperatures
-
摘要: 为研究季冻区石灰改良盐渍土路基稳定性,室内试验分析了冻融及低温环境下的动力参数变化规律。以哈肇公路沿线盐渍土为研究对象,采用英国GDS动三轴试验系统(GDSTAS),对不同动荷载频率、围压、温度及冻融循环次数下的石灰改良盐渍土动剪切模量和阻尼比进行试验测定,结果表明:转折点动剪切模量可以反映动剪切模量的变化趋势;温度降低、围压增加及频率增加条件下,动剪切模量增加且阻尼比减小,其中温度对动力参数影响更加显著;随着冻融循环次数增加,动剪切模量减小且阻尼比增加;提出温度修正系数和冻融修正系数,对动剪切模量和阻尼比进行修正并曲线拟合,拟合曲线显示修正系数转折点分别为-6℃处和3次冻融循环处。在此基础上提出动力参数预测模型,可为石灰改良盐渍土路基稳定性分析提供参考。Abstract: In order to study the stability of lime-improved saline soil roadbed in seasonal freezing areas, laboratory tests are conducted to analyze the change of the dynamic parameters under freeze-thaw and low-temperature environments. The British GDS dynamic triaxial test system (GDSTAS) is adopted to measure the dynamic shear modulus and damping ratio of lime-improved saline soil under different dynamic load frequencies, confining pressures, temperatures and numbers of freeze-thaw cycles. The results show that the dynamic shear modulus at the turning point can reflect the changing trend of the dynamic shear modulus of the sample. The decrease in temperature, the increase in frequency and the increase in confining pressure can increase the dynamic shear modulus and decrease the damping ratio of the sample. The temperature has a more significant impact on the dynamic characteristics. When the number of freeze-thaw cycles increases, the dynamic shear modulus and the damping ratio increase. The temperature correction coefficient and freeze-thaw correction coefficient are proposed to correct the dynamic shear modulus and damping ratio, and the curve fitting is performed. The fitting curve shows that the turning points of the correction coefficient are at -6℃ and the three freeze-thaw cycles respectively. On this basis, a dynamic parameter prediction model is proposed as reference for the stability design of lime-improved saline soil roadbed.
-
Keywords:
- saline soil /
- lime improvement /
- dynamic shear modulus /
- damping ratio /
- low temperature /
- freeze-thaw cycle
-
-
表 1 盐渍土离子含量测定值
Table 1 Measured values of ion content of saline soil
(%) 阳离子 阴离子 K+ Na+ Ca2+ Mg2+ 总量 CO32- HCO3- SO42- Cl- 总量 0.21 0.2173 0.0244 0.0357 0.4870 0.2205 0.1086 0.0622 0.1134 0.5047 表 2 试验方案
Table 2 Test plan
试验
编号试验温度
/℃频率/Hz 有效围压
/kPa冻融循环次数 S1 20 1 100 0 S2~S3 20 3,5 100 0 S4~S6 20 1 50,100,150 0 S7~S13 0,-2,-4,-6,
-8,-10,-161 100 0 S14~S18 20 1 100 1,3,5,7,9 表 3 不同频率及围压下动剪切模量及阻尼比的拟合参数
Table 3 Fitting parameters of dynamic shear modulus and damping ratio under different frequencies and confining pressures
频率/Hz 动剪切模量Gd 阻尼比λ a b R2 λmax c n R2 1 0.0101 4.7873 0.9865 0.46 0.0025 0.6845 0.9183 3 0.0076 3.4389 0.9886 0.39 0.0096 0.3665 0.9893 5 0.0056 3.3365 0.9887 0.36 0.0169 0.3469 0.9950 围压/kPa 动剪切模量Gd 阻尼比λ a b R2 λmax c n R2 50 0.0145 4.7686 0.9942 0.55 0.0036 0.4693 0.9940 100 0.0101 4.7873 0.9865 0.46 0.0025 0.6845 0.9183 150 0.0080 3.4256 0.9941 0.43 0.1306 0.2455 0.9802 表 4 不同频率及围压下最大动剪切模量及阻尼比
Table 4 Maximum dynamic shear modulus and damping ratios under different frequencies and confining pressures
参数 频率/Hz 围压/kPa 1 3 5 50 100 150 Gdmax/MPa 98.81 130.89 177.31 69.11 98.81 125.31 λmax 0.46 0.39 0.36 0.55 0.46 0.42 表 5 不同温度下动剪切模量及阻尼比的拟合参数
Table 5 Fitting parameters of dynamic shear modulus and damping ratio under different temperatures
温度/℃ 动剪切模量Gd 阻尼比λ a b R2 λmax c n R2 20 0.0101 4.7873 0.9865 0.4546 0.0025 0.6845 0.9183 0 0.0073 4.1682 0.9965 0.3928 0.0018 0.5971 0.9384 -2 0.0041 3.2572 0.9728 0.3718 0.0016 0.6851 0.9707 -4 0.0031 2.7513 0.9908 0.2818 0.0015 0.6153 0.9330 -6 0.0028 2.5054 0.9989 0.2170 0.0013 0.5750 0.9742 -8 0.0024 2.5351 0.9966 0.1915 0.0010 0.6831 0.9409 -10 0.0024 2.1925 0.9811 0.1441 0.0008 0.5857 0.9024 -16 0.0024 1.7242 0.9247 0.0700 0.0006 0.4172 0.9567 表 6 不同温度下最大动剪切模量及阻尼比
Table 6 Maximum dynamic shear modulus and damping ratios under different temperatures
温度/℃ Gdmax/MPa λmax 20 98.81 0.46 0 137.17 0.39 -2 242.13 0.37 -4 320.51 0.28 -6 357.14 0.22 -8 413.22 0.19 -10 414.94 0.14 -16 423.73 0.07 表 7 温度修正系数的拟合参数
Table 7 Fitting parameters of temperature correction coefficient
A1 A2 T0 r1 A0 y0 r2 2.76 -0.29 -0.76 2.26 -4.32 4.48 -3.12 α1 α2 R2 y′0 A′0 r′2 R2 0.53 0.66 0.991 -0.019 0.91 11.42 0.990 表 8 不同冻融循环次数动剪切模量及阻尼比的拟合参数
Table 8 Fitting parameters of dynamic shear modulus and damping ratio under different freeze-thaw cycles
冻融循环次数 动剪切模量Gd 阻尼比λ a2 b2 R2 λmax c2 n2 R2 0 0.0102 4.7873 0.9865 0.4649 0.0025 0.6972 0.8884 1 0.0145 6.1150 0.9960 0.5675 0.0040 0.7006 0.9551 3 0.0214 6.1155 0.9984 0.6641 0.0049 0.6692 0.9631 5 0.0227 6.9325 0.9951 0.6827 0.0061 0.7094 0.9558 7 0.0262 7.8786 0.9953 0.7022 0.0075 0.7610 0.9514 9 0.0283 7.6030 0.9983 0.7124 0.0085 1.0048 0.9741 表 9 不同冻融循环次数下最大动剪切模量及阻尼比
Table 9 Maximum dynamic shear modulus and damping ratios under different freeze-thaw cycles
冻融循环次数 Gdmax/MPa λmax 0 98.81 0.47 1 70.08 0.57 3 46.53 0.66 5 43.80 0.68 7 39.26 0.70 9 35.65 0.71 表 10 冻融循环修正系数的拟合参数
Table 10 Fitting parameters of freeze-thaw cycle correction coefficient
a3 b3 c3 R2 0.56 1.87 0.38 0.991 a4 b4 c4 R2 1.53 -0.50 0.65 0.980 -
[1] JING R X, ZHANG F, FENG D C, et al. Dynamic shear modulus and damping ratio of compacted silty clay subjected to freeze–thaw cycles[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019244. doi: 10.1061/(ASCE)MT.1943-5533.0002893
[2] 周凤玺, 周立增, 王立业, 等. 温度梯度作用下非饱和盐渍土水盐迁移及变形特性研究[J]. 岩石力学与工程学报, 2020, 39(10): 2115–2130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm ZHOU Feng-xi, ZHOU Li-zeng, WANG Li-ye, et al. Study on water and salt migration and deformation properties of unsaturated saline soil under temperature gradient[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2115–2130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010015.htm
[3] 张宏, 闫晓辉, 王中翰, 等. 压实风积沙土层盐分迁移规律研究[J]. 岩土工程学报, 2019, 41(4): 741–747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904023.htm ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, et al. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741–747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904023.htm
[4] 牛丽思, 张爱军, 王毓国, 等. NaCl含量对伊犁原状黄土湿陷和溶陷特性的影响[J]. 岩土工程学报, 2020, 42(增刊2): 67–71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm NIU Li-si, ZHANG Ai-jun, WANG Yu-guo, et al. Effects of Na Cl content on water collapsibility and salt collapsibility of undisturbed Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 67–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2012.htm
[5] 张锐, 刘海洋, 张宏. 风积沙填筑路基土基质吸力影响因子分析[J]. 公路, 2021, 66(3): 47–53. doi: 10.3969/j.issn.1007-0109.2021.03.011 ZHANG Rui, LIU Hai-yang, ZHANG Hong. Analysis on influence factors of matric suction of aeolian sand filled subgrade soil[J]. Highway, 2021, 66(3): 47–53. (in Chinese) doi: 10.3969/j.issn.1007-0109.2021.03.011
[6] 杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22–40. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005006.htm YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005006.htm
[7] 杨爱武, 杨少朋, 郎瑞卿, 等. 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593–600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103001.htm YANG Ai-wu, YANG Shao-peng, LANG Rui-qing, et al. Three-dimensional mechanical properties of light solidified saline soil[J]. Rock and Soil Mechanics, 2021, 42(3): 593–600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103001.htm
[8] 朱燕, 甑祥, 余湘娟, 等. 高分子材料固化盐渍土的强度试验研究[J]. 公路, 2020, 65(5): 265–271. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202005053.htm ZHU Yan, ZENG Xiang, YU Xiang-juan, et al. Experimental study on the strength of polymer materials solidified saline soil[J]. Highway, 2020, 65(5): 265–271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202005053.htm
[9] 柳艳华, 张宏, 齐文廷. 石灰改良滨海氯盐渍土的室内试验研究[J]. 建筑材料学报, 2011, 14(2): 217–221. doi: 10.3969/j.issn.1007-9629.2011.02.014 LIU Yan-hua, ZHANG Hong, QI Wen-ting. Treatment of coastal chloride saline soil by lime addition[J]. Journal of Building Materials, 2011, 14(2): 217–221. (in Chinese) doi: 10.3969/j.issn.1007-9629.2011.02.014
[10] 应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 43(1): 53–61. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm YING Sai, ZHOU Feng-xi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 53–61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202101009.htm
[11] 赵福堂, 常立君, 张吾渝. 温度变化条件下路基盐渍土动应力–动应变响应规律研究[J]. 铁道标准设计, 2019, 63(5): 54–59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201905012.htm ZHAO Fu-tang, CHANG Li-jun, ZHANG Wu-yu. Study on the dynamic stress-strain response of subgrade saline soil under temperature change condition[J]. Railway Standard Design, 2019, 63(5): 54–59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201905012.htm
[12] 张锋. 深季节冻土区重载汽车荷载下路基动力响应与永久变形[D]. 哈尔滨: 哈尔滨工业大学, 2012. ZHANG Feng. Dynamic Response and Permanent Deformation of Subgrade Induced by Heavy Truck Load in Deep Seasonally Frozen Region[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
[13] 张仰鹏. 季冻区油页岩废渣路基填土动力特性及变形特征研究[D]. 长春: 吉林大学, 2019. ZHANG Yang-peng. Research on Dynamic Properties and Deformation Characteristics of Subgrade Filling Modified by Oil Shale Wastes in Seasonally Frozen Area[D]. Changchun: Jilin University, 2019. (in Chinese)
[14] SUN J, GONG M S, TAO X X. Dynamic shear modulus of undisturbed soil under different consolidation ratios and its effects on surface ground motion[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(4): 561–568. doi: 10.1007/s11803-013-0197-6
[15] LIN B, ZHANG F, FENG D C, et al. Dynamic shear modulus and damping ratio of thawed saturated clay under long-term cyclic loading[J]. Cold Regions Science and Technology, 2018, 145: 93–105. doi: 10.1016/j.coldregions.2017.10.003
[16] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692. doi: 10.1061/JSFEAQ.0001760
[17] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: measurement and parameter effects (Terzaghi Lecture)[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 603–624. doi: 10.1061/JSFEAQ.0001756
[18] YU X B, LIU H B, SUN R, et al. Improved Hardin-Drnevich model for the dynamic modulus and damping ratio of frozen soil[J]. Cold Regions Science and Technology, 2018, 153: 64–77. doi: 10.1016/j.coldregions.2018.05.004
[19] 严晗, 王天亮, 刘建坤, 等. 反复冻融条件下粉砂土动力学参数试验研究[J]. 岩土力学, 2014, 35(3): 683–688. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403012.htm YAN Han, WANG Tian-liang, LIU Jian-kun, et al. Experimental study of dynamic parameters of silty soil subjected to repeated freeze-thaw[J]. Rock and Soil Mechanics, 2014, 35(3): 683–688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403012.htm
[20] 张向东, 任昆, 刘家顺. 不同冻结条件下辽西风积砂土动力参数试验研究[J]. 冰川冻土, 2020, 42(4): 1229–1237. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004014.htm ZHANG Xiang-dong, REN Kun, LIU Jia-shun. Experimental study on dynamic parameters of aeolian sand in western Liaoning Province under different freezing conditions[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1229–1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202004014.htm
-
期刊类型引用(1)
1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 . 百度学术
其他类型引用(4)