Influences of thermo-mechanical properties of clay on mechanical responses of energy piles
-
摘要: 能量桩运行会导致土体温度场的改变,从而影响桩周土的热–力学特性,进而影响能量桩的变形、桩–土界面应力及承载性能。将ACMEG-T土体热本构模型在ABAQUS软件中进行二次开发,通过编写UMAT子程序对能够反映黏土热–力耦合特性的三轴试验结果进行模拟与分析,验证了模型的可靠性。建立数值模型,研究了土体热–力学特性对能量桩位移、桩–土界面应力及桩身轴力的影响规律。研究结果表明,温度变化会导致土体产生累计沉降,并进一步导致桩侧产生负摩阻力;在负摩阻力的影响下,能量桩会产生额外的沉降以及不可恢复的轴力;土体热–力学特性对能量桩力学特性的影响效应随着土体超固结比的增加逐渐减弱。Abstract: Under the action of temperature variation induced by energy piles, the mechanical properties of soils surrounding the piles will be changed, thereby affecting their deformation, the stress of the pile-soil interface and the bearing capacity of the pile foundation. The ACMEG-T constitutive model for the thermal properties of soils is developed in ABAQUS commercial software. The accuracy of the program is verified by simulating the triaxial test results by using the UMAT subroutine. Based on the numerical simulation, the influence of thermo-mechanical properties of soils on the displacement of pile head, the stress of the pile-soil interface and the axial force of the energy piles in clay are studied. The results show that the change of soil temperature can lead to irretrievable settlement of soils, and further lead to negative skin friction on the pile shaft. The additional settlement and irreversible change of axial force of the energy piles can be induced by the negative skin friction. With the increase of the over-consolidation ratio of clay, the effects of thermo-mechanical properties of soils on the mechanical response of the energy piles decrease.
-
Keywords:
- energy pile /
- clay /
- constitutive model /
- over-consolidation ratio /
- numerical simulation
-
-
表 1 ACMEG-T热本构模型材料参数表
Table 1 Properties of materials used in ACMEG-T thermo-mechanical model
模型参数 Kref/MPa Gref/MPa ne βs/10-5 a b c d φ′0/(°) g/10-3 α β reiso redev γT Boom黏土 130 130 0.4 4 0.007 0.6 0.012 1.3 16 8.5 1 18.00 0.001 0.3 0.20 Bangkok黏土 42 15 1.0 2 0.020 0.2 0.040 1.6 22.66 1.0 2 5.49 0.150 0.1 0.22 -
[1] BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81–122. doi: 10.1680/geot.2006.56.2.81
[2] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176–181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm LIU Han-long, KONG Gang-qiang, NG C. Review of the applications of energy pile and technical development of PCC energy pile[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176–181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm
[3] 桩基地热能利用技术标准: JGJ/T 438—2018[S]. 2018. Technical Stanard for Utlization of Geothermal Energy through Piles: JGJ/T 438—2018[S]. 2018. (in Chinese)
[4] ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(7): 902–910. doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
[5] BALDI G, HUECKEL T, PEANO A. Developments in Modeling of Thermo-Hydro-Mechanical Behavior of Boom Clay and Clay-Based Buffer Materials[R]. Luxembourg: Commission of the European Communities, 1991.
[6] HUECKEL T, BORSETTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, 1990, 116(12): 1765–1777. doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
[7] CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3): 607–620. doi: 10.1139/t99-111
[8] 姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244–1250. doi: 10.3321/j.issn:0559-9350.2008.11.013 YAO Yang-ping, LI Zi-qiang, HOU Wei, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244–1250. (in Chinese) doi: 10.3321/j.issn:0559-9350.2008.11.013
[9] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学(技术科学), 2011, 41(2): 158–169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Scientia Sinica (Technologica), 2011, 41(2): 158–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm
[10] ZHOU C, NG C W W. A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52(8): 1101–1110. doi: 10.1139/cgj-2014-0229
[11] 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581–1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm CHENG Xiao-hui, CHEN Zhi-hui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581–1590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm
[12] 陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 89–498. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 89–498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm
[13] LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: an isotropic yield mechanism[J]. Computers and Geotechnics, 2003, 30(8): 649–660. doi: 10.1016/j.compgeo.2003.09.001
[14] LALOUI L, FRANÇOIS B. ACMEG-T: soil thermoplasticity model[J]. Journal of Engineering Mechanics, 2009, 135(9): 932–944. doi: 10.1061/(ASCE)EM.1943-7889.0000011
[15] 费康, 钱健, 洪伟, 等. 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651–2661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm FEI Kang, QIAN Jian, HONG Wei, et al. Numerical analysis of mechanical behavior of energy piles in clay[J]. Rock and Soil Mechanics, 2018, 39(7): 2651–2661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm
[16] 姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237–245. doi: 10.3969/j.issn.1000-7598.2010.01.041 YAO Yang-ping, FENG Xing, HUANG Xiang, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237–245. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.041
[17] DI DONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861–888. doi: 10.1002/nag.2341
[18] HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952–2971
[19] CEKEREVAC C, LALOUI L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209–228.
[20] POTTS D M, ZDRAVKOVIĆ L. Finite Element Analysis in Geotechnical Engineering: Application[M]. London: Thomas Telford, 2001.
[21] LALOUI L, CEKEREVAC C. Numerical simulation of the non-isothermal mechanical behaviour of soils[J]. Computers and Geotechnics, 2008, 35(5): 729–745.
[22] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763–781.
[23] 建筑桩基技术规范: JGJ 94—2008[S]. 2008. Technical Code for Building Pile Foundations: JGJ 94—2008[S]. 2008. (in Chinese)
[24] LUO J, ZHANG Q, ZHAO H F, et al. Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019109.
-
期刊类型引用(3)
1. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 . 百度学术
2. 李从安,许晓彤,沈登乐,王卫,胡波. 弱膨胀土三轴膨胀模型及其应用. 长江科学院院报. 2023(10): 137-141 . 百度学术
3. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看
其他类型引用(3)