Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黏土热–力学特性对能量桩力学特性的影响

陆浩杰, 孔纲强, 刘汉龙, 吴迪, 陈永辉

陆浩杰, 孔纲强, 刘汉龙, 吴迪, 陈永辉. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004
引用本文: 陆浩杰, 孔纲强, 刘汉龙, 吴迪, 陈永辉. 黏土热–力学特性对能量桩力学特性的影响[J]. 岩土工程学报, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004
LU Hao-jie, KONG Gang-qiang, LIU Han-long, WU Di, CHEN Yong-hui. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004
Citation: LU Hao-jie, KONG Gang-qiang, LIU Han-long, WU Di, CHEN Yong-hui. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004

黏土热–力学特性对能量桩力学特性的影响  English Version

基金项目: 

国家自然科学基金项目 51922037

国家自然科学基金项目 51778212

国家自然科学基金项目 52008225

详细信息
    作者简介:

    陆浩杰(1995—),男,硕士,主要从事能量桩技术方面的研究工作。E-mail: 373652857@qq.com

    通讯作者:

    孔纲强, E-mail: gqkong1@163.com

  • 中图分类号: TU442

Influences of thermo-mechanical properties of clay on mechanical responses of energy piles

  • 摘要: 能量桩运行会导致土体温度场的改变,从而影响桩周土的热–力学特性,进而影响能量桩的变形、桩–土界面应力及承载性能。将ACMEG-T土体热本构模型在ABAQUS软件中进行二次开发,通过编写UMAT子程序对能够反映黏土热–力耦合特性的三轴试验结果进行模拟与分析,验证了模型的可靠性。建立数值模型,研究了土体热–力学特性对能量桩位移、桩–土界面应力及桩身轴力的影响规律。研究结果表明,温度变化会导致土体产生累计沉降,并进一步导致桩侧产生负摩阻力;在负摩阻力的影响下,能量桩会产生额外的沉降以及不可恢复的轴力;土体热–力学特性对能量桩力学特性的影响效应随着土体超固结比的增加逐渐减弱。
    Abstract: Under the action of temperature variation induced by energy piles, the mechanical properties of soils surrounding the piles will be changed, thereby affecting their deformation, the stress of the pile-soil interface and the bearing capacity of the pile foundation. The ACMEG-T constitutive model for the thermal properties of soils is developed in ABAQUS commercial software. The accuracy of the program is verified by simulating the triaxial test results by using the UMAT subroutine. Based on the numerical simulation, the influence of thermo-mechanical properties of soils on the displacement of pile head, the stress of the pile-soil interface and the axial force of the energy piles in clay are studied. The results show that the change of soil temperature can lead to irretrievable settlement of soils, and further lead to negative skin friction on the pile shaft. The additional settlement and irreversible change of axial force of the energy piles can be induced by the negative skin friction. With the increase of the over-consolidation ratio of clay, the effects of thermo-mechanical properties of soils on the mechanical response of the energy piles decrease.
  • 图  1   子增量步迭代流程图

    Figure  1.   Flow chart of iteration of sub-incremental step

    图  2   Boom黏土体积应变与温度关系曲线

    Figure  2.   Relationship between volumetric strain and temperature of Boom clay

    图  3   Bangkok黏土平均有效应力与体积应变关系曲线

    Figure  3.   Relationship between mean effective stress and volumetric strain of Bangkok clay

    图  4   Bangkok黏土竖向有效应力与体积应变关系曲线

    Figure  4.   Relationship between vertical effective stress and volumetric strain of Bangkok clay

    图  5   Bangkok黏土轴应变与偏应力及体积应变的关系曲线

    Figure  5.   Relationship among axial strain, deviant stress and volumetric strain of Bangkok clay

    图  6   数值模型网格图

    Figure  6.   Grid diagram of numerical model

    图  7   桩顶荷载–沉降曲线

    Figure  7.   Curves of load-settlement of pile top

    图  8   桩土温度变化

    Figure  8.   Variation of temperature of energy piles and soils

    图  9   桩顶位移与桩体温度变化关系图

    Figure  9.   Variation of displacement at pile head with temperature

    图  10   能量桩累计沉降随OCR变化

    Figure  10.   Variation of accumulated settlement with OCR

    图  11   土体沉降随深度变化

    Figure  11.   Variation of settlement of soils with pile depth

    图  12   桩侧摩阻力随深度变化

    Figure  12.   Variation of friction resistance at pile side with pile depth

    图  13   温度引起额外轴力随深度变化

    Figure  13.   Variation of thermally induced axial force with pile depth

    图  14   温度引起最大轴力随OCR变化

    Figure  14.   Variation of maximum thermally induced axial forces with OCR

    图  15   温度循环过后桩体轴力随深度变化

    Figure  15.   Variation of thermally induced axial force with pile depth after heating-cooling cycle

    表  1   ACMEG-T热本构模型材料参数表

    Table  1   Properties of materials used in ACMEG-T thermo-mechanical model

    模型参数 Kref/MPa Gref/MPa ne βs/10-5 a b c d φ0/(°) g/10-3 α β reiso redev γT
    Boom黏土 130 130 0.4 4 0.007 0.6 0.012 1.3 16 8.5 1 18.00 0.001 0.3 0.20
    Bangkok黏土 42 15 1.0 2 0.020 0.2 0.040 1.6 22.66 1.0 2 5.49 0.150 0.1 0.22
    下载: 导出CSV
  • [1]

    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81–122. doi: 10.1680/geot.2006.56.2.81

    [2] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176–181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    LIU Han-long, KONG Gang-qiang, NG C. Review of the applications of energy pile and technical development of PCC energy pile[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176–181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    [3] 桩基地热能利用技术标准: JGJ/T 438—2018[S]. 2018.

    Technical Stanard for Utlization of Geothermal Energy through Piles: JGJ/T 438—2018[S]. 2018. (in Chinese)

    [4]

    ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(7): 902–910. doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)

    [5]

    BALDI G, HUECKEL T, PEANO A. Developments in Modeling of Thermo-Hydro-Mechanical Behavior of Boom Clay and Clay-Based Buffer Materials[R]. Luxembourg: Commission of the European Communities, 1991.

    [6]

    HUECKEL T, BORSETTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, 1990, 116(12): 1765–1777. doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)

    [7]

    CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3): 607–620. doi: 10.1139/t99-111

    [8] 姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244–1250. doi: 10.3321/j.issn:0559-9350.2008.11.013

    YAO Yang-ping, LI Zi-qiang, HOU Wei, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244–1250. (in Chinese) doi: 10.3321/j.issn:0559-9350.2008.11.013

    [9] 姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学(技术科学), 2011, 41(2): 158–169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm

    YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Scientia Sinica (Technologica), 2011, 41(2): 158–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm

    [10]

    ZHOU C, NG C W W. A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52(8): 1101–1110. doi: 10.1139/cgj-2014-0229

    [11] 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581–1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm

    CHENG Xiao-hui, CHEN Zhi-hui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581–1590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm

    [12] 陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 89–498. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm

    CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 89–498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm

    [13]

    LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: an isotropic yield mechanism[J]. Computers and Geotechnics, 2003, 30(8): 649–660. doi: 10.1016/j.compgeo.2003.09.001

    [14]

    LALOUI L, FRANÇOIS B. ACMEG-T: soil thermoplasticity model[J]. Journal of Engineering Mechanics, 2009, 135(9): 932–944. doi: 10.1061/(ASCE)EM.1943-7889.0000011

    [15] 费康, 钱健, 洪伟, 等. 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651–2661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm

    FEI Kang, QIAN Jian, HONG Wei, et al. Numerical analysis of mechanical behavior of energy piles in clay[J]. Rock and Soil Mechanics, 2018, 39(7): 2651–2661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm

    [16] 姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237–245. doi: 10.3969/j.issn.1000-7598.2010.01.041

    YAO Yang-ping, FENG Xing, HUANG Xiang, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237–245. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.041

    [17]

    DI DONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861–888. doi: 10.1002/nag.2341

    [18]

    HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952–2971

    [19]

    CEKEREVAC C, LALOUI L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209–228.

    [20]

    POTTS D M, ZDRAVKOVIĆ L. Finite Element Analysis in Geotechnical Engineering: Application[M]. London: Thomas Telford, 2001.

    [21]

    LALOUI L, CEKEREVAC C. Numerical simulation of the non-isothermal mechanical behaviour of soils[J]. Computers and Geotechnics, 2008, 35(5): 729–745.

    [22]

    LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763–781.

    [23] 建筑桩基技术规范: JGJ 94—2008[S]. 2008.

    Technical Code for Building Pile Foundations: JGJ 94—2008[S]. 2008. (in Chinese)

    [24]

    LUO J, ZHANG Q, ZHAO H F, et al. Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019109.

  • 期刊类型引用(3)

    1. 范文晓. 南阳膨胀土浸水变形特性及微观结构研究. 建筑科学. 2025(01): 126-135 . 百度学术
    2. 李从安,许晓彤,沈登乐,王卫,胡波. 弱膨胀土三轴膨胀模型及其应用. 长江科学院院报. 2023(10): 137-141 . 百度学术
    3. 叶云雪,邹维列,韩仲,谢鹏,张俊峰,徐永福. 考虑初始状态影响的膨胀土一维膨胀特性研究. 岩土工程学报. 2021(08): 1518-1525 . 本站查看

    其他类型引用(3)

图(15)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-08-31
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回