Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软土地区基坑工程变形控制方法及工程应用

郑刚

郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
引用本文: 郑刚. 软土地区基坑工程变形控制方法及工程应用[J]. 岩土工程学报, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001
Citation: ZHENG Gang. Method and application of deformation control of excavations in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 1-36. DOI: 10.11779/CJGE202201001

软土地区基坑工程变形控制方法及工程应用  English Version

基金项目: 

国家自然科学基金重点项目 41630641

详细信息
    作者简介:

    郑刚(1967—),男,博士,教授,博士生导师,主要从事城市岩土工程的教学与科研工作。E-mail: zhenggang1967@163.com

  • 中图分类号: TU470

Method and application of deformation control of excavations in soft ground

  • 摘要: 基坑变形控制是软土地区基坑工程的核心内容,不仅与自身工程安全密切相关,更涉及到对周边环境的影响。随着城市地上、地下各类建(构)筑物越来越密集,基坑工程施工产生的变形对环境影响的控制愈加成为基坑工程的焦点问题。首先,从基坑施工全过程控制的视角,分析了基坑施工全过程各阶段的变形特征、机理以及对环境的影响。进而,将基坑变形及其对环境影响的控制划分为“基于基坑支护体系的变形控制”和“基于邻近基坑保护对象的变形控制”两类方法。针对基于邻近基坑保护对象的变形控制,提出了不是基于对基坑支护体系,而是直接着眼于保护对象的变形主动控制理论,通过对关键区域土体的应力和变形的控制,实现对保护对象的测控一体化靶向控制。此外,提出了基坑无支撑支护理论并发展了一系列软弱土地区基坑绿色无支撑支护技术,实现了在较大的深度条件下也可进行坑无支撑支护设计。通过“基坑施工全过程控制”“基坑变形主动控制理论”“基坑无支撑支护控制体系”的变形控制理论及工程应用,努力推动基坑工程变形控制向“高效、智能、绿色、低碳”方向发展。
    Abstract: The main task of excavations in soft ground is the deformation control, which is closely rated to their safety and environmental impact. With the increase of the buildings and structures in the urban areas, the construction-induced deformation has become the focus of the excavations. The characteristics, mechanism and environmental impact of the deformation caused by each excavation phase are analyzed in a view of the whole-process control. Furthermore, the control methods for the deformation and environmental impact of the excavations are classified into two types, i.e., the control based on the retaining system of the excavations and that based on the protected objects adjacent to them. For the latter type, the active control theory is proposed focusing on the deformation of the protected objects instead of the retaining system. This active targeting technology integrated with the measurement and control for the protected objects is realized by controlling the stress and deformation of the key zone. Finally, the strut-free retaining theory is proposed and a series of strut-free retaining technologies are developed for the excavations in soft ground. The design of strut-free retaining for the excavations with relatively large depth can be realized using these technologies. The theories and applications of the whole-process control, the active control and the strut-free retaining system promote the deformation control of the excavations towards the efficient, intelligent, green and low-carbon aim.
  • 全球超过90%的天然气水合物赋存于水深超过800 m的深水区,通常位于海底以下300 m以内的浅软地层[1]。深水钻井过程中如果钻遇水合物层,由于温度、压力条件的改变导致水合物不断分解,地层的稳定性和承载力将会大幅下降,水下井口和表层导管在井口载荷的作用下可能失稳下沉,造成井眼报废、甲烷逸散,甚至海底滑坡等重大风险,严重影响作业安全和海洋生态环境[2-4]。中国南海某深水探井A1井的作业水深为1710 m,采用喷射法下入表层导管和水下井口,钻前的地震资料未提示存在水合物层,在二开20in套管固井候凝时,ROV观测到36in表层导管与泥线界面处发生两处气窜,气窜处形成了两处大约0.3 m×0.5 m的孔洞,气体从孔洞内连续窜出,气泡直径达到0.1 m左右,而高低压井口头之间始终未有气泡溢出,所有气泡均在泥线与表层套管界面处逸出。随后作业方暂停钻井作业,10 h后ROV再次入水观察,此时井口附近地层发生不均匀沉降和开裂,并且在牛眼下方井口头外壁和水下基盘又形成了水合物,后经证实该井浅部地层存在25~35 m厚的含水合物层[5]。因此,研究深水钻遇天然气水合物层的井口稳定性对于保障深水钻井作业安全具有重要的现实意义。近年来,国内外学者通过数值模拟对水合物开采过程中的地层稳定性进行了评估,文献[67]研究了南海天然气水合物分解对海底斜坡稳定性的影响,文献[8]研究了含水合物地层钻井过程中的井壁稳定性问题,文献[9]分析了钻井过程中水合物地层的安全承载能力,然而目前针对深水钻井钻遇水合物地层的井口稳定性研究尚处于空白状态,由于钻井过程中水合物分解是一个伴随着相态变化的多场耦合作用,单纯采用理论建模的方法,需要对模型进行大量的假设以及边界条件的简化,计算耗时长并且和现场情况相差也大[10],针对这一问题,本文分析了钻遇不同埋深和分布位置的水合物层对井口稳定性的影响,并开展了含水合物地层室内钻井物理模拟实验提出了含水合物地层表层导管入泥深度及井口优选方法,为深水含水合物地层钻井设计及井口安全评估提供了理论基础。

    水合物层的埋深和分布位置对钻井有不同的影响,深水钻井表层导管喷射下入的深度通常为70~90 m,因此将水合物层分布位置分为两种情况(图 1):①水合物层的埋深较浅,在海底泥线以下90 m以内,一开表层导管喷射下入过程中就会穿过水合物层;②水合物层的埋深相对较深,在海底泥线以下90~300 m,水合物层在表层导管鞋下方,在二开钻进过程中会穿过水合物层。分别对两种情况下水合物分解对井口稳定性的影响进行分析。

    图  1  不同水合物层相对水下井口分布位置
    Figure  1.  Schematic diagram of distribution of gas hydrate formations

    如果水合物层埋深浅,一开表层导管下入过程中就会穿过水合物层(图 2)。目前深水表层导管大多采用喷射下入,根据射流扰动范围将水合物层划分为水合物分解区和水合物稳定区。水合物分解区的承载力变化机理主要包括两方面:①钻井喷射破岩过程中,由于射流扰动导致地层中的水合物开始不断分解,并释放出甲烷气体和水,水合物分解区的孔隙压力快速上升,地层的有效应力降低;②土体的初始颗粒骨架被破坏,地层的黏聚力和强度大幅下降。表层导管穿过水合物层后,地层中的超孔隙压力开始逐渐消散,表层导管周围的土体重新回填,同时由于水合物的分解地层开始逐渐产生沉降,地层承载力也逐渐恢复。当表层导管喷射下入就位后,井口载荷主要是由表层导管自上而下的侧向摩阻力Pf和端部阻力Pb来承担,表层导管端部面积很小,端部承载力相对侧向摩阻力来说是极小值,保证井口不下沉需满足[11]

    WLPfs + Pfh+Pb=π Dd10ατ(z)dz+π Dd2d1Kfh(z)dz (1)
    图  2  表层导管喷射下入穿过水合物层示意图
    Figure  2.  Schematic diagram of capacity loss during jetting through hydrate formations

    式中,WL为井口载荷(N),Pfs为不含水合物地层和表层导管的侧向摩阻力(N),Pfh为水合物层和表层导管的侧向摩阻力(N),Pb为表层导管的端部阻力(N),D为表层导管周长(m),α为黏着系数,无因次,为表层导管侧向摩擦力与地层不排水抗剪强度的比值,主要同上覆土压力和土质参数有关,可根据API标准查询获取,τ(z)为不含水合物地层的不排水抗剪强度(Pa),fh(z)为水合物分解前地层和表层导管单位面积侧向摩阻力分布(Pa),K为水合物分解后的侧向摩阻力折减系数,无因次,即水合物分解后的侧向摩阻力同分解前的侧向摩阻力比值。

    式(1)表明,表层导管和井口保持稳定主要取决于水合物分解后地层的剩余承载力,其大小主要由水合物分解前地层同表层导管的侧向摩阻力分布fh(z)及折减系数K决定,fh(z)主要由水合物及海底土的不排水抗剪强度等相关参数决定,可由室内试验测定,而折减系数K主要由3个因素决定。

    (1)水合物分解区的范围,主要包括水合物层的厚度和水合物分解区的半径,水合物层的厚度越厚,表层导管和水合物层的接触面积越大,水合物分解后地层的侧向摩阻力越小;水合物分解区的半径主要是由射流对水合物层的扰动半径决定,水力射流形成的井眼半径为圆柱孔初始半径,表层导管半径为圆孔扩张后半径。喷射法安装表层导管对土体的影响可看做无限土体中圆柱孔扩张问题,基于水射流理论,得到射流影响的地层塑性区半径rp可由下式计算:

    σr=p0(pp0)(r2e/r21)(r2e/r2u1)σθ=p0+(pp0)(r2e/r2+1)(r2e/r2u1)rp=(1+μ)(pp0)E(r2e/r2u1)[(12μ)r+r2er]} (2)

    式中,r为表层导管周围任意点土体到表层导管中心的距离(m),ru为水力射流形成的井眼半径(m),rc为表层导管半径(m),rp为土体塑性区半径(m),re为土体弹性区半径(m),P0为射流压力(Pa)。水合物的分解半径越大,地层的强度越低,土体重新回填固结恢复承载力的时间也越久。

    (2)水合物层的饱和度,水合物层的饱和度越高,水合物的分解量越大,因此产生的超孔隙压力和地层沉降越大,土体重新回填恢复后的表层导管侧向摩阻力越小。

    (3)时间效应,由于水合物分解后产生的超孔隙压力的消散以及土体的重新固结有一个过程,即时间效应,因此表层导管穿过水合物层的速度以及表层导管就位后的静置等候时间对于表层导管侧向摩阻力的恢复有明显影响。本文通过含水合物地层的喷射模拟试验,建立水合物分解区的范围、水合物层的饱和度以及时间效应同折减系数K的拟合数学模型。

    如果水合物层的埋深相对较深,水合物层位于表层导管下方(图 3),在二开钻进过程中才会钻遇水合物。和第一种工况不同的是,喷射过程中是表层导管周围的水合物层受到扰动,直接导致地层的承载力降低,而二开钻井过程中由于钻头切削和钻井液循环导致井眼附近的水合物首先发生分解,同时逐渐传递到周围产生半径略大于井眼半径的水合物分解区,底部的水合物分解使得上部的海底土产生新的固结沉降,地层的沉降位移越大则表层导管越容易失稳下沉,由于钻井引起的水合物分解半径有限(小于5 m),依据朱敬宇等[12]的研究结论,通过ABAQUS有限元分析软件采用强度折减法,即逐步减小含水合物地层的强度模拟水合物分解过程,埋深160 m、厚度40 m、饱和度30%的水合物层,当水合物分解半径不超过5 m时,上覆地层基本保持稳定状态,最大垂向沉降位移不超过0.15 m,海底表面基本无沉降。因此当水合物埋深较深时,钻井过程中的井口失稳风险较小,只有当水合物大规模试采或商业化开发过程中,水合物的分解半径很大时则需要考虑井口失稳和地层沉降的风险。

    图  3  水合物层在表层导管下方示意图
    Figure  3.  Surface subsidence caused by hydrate decomposition during drilling

    为厘清钻井过程中含水合物沉积物承载力折减规律,分析水合物层饱和度以及时间效应同水合物层承载力降低的关系,在自主研发的水合物钻井模拟试验装置上,开展了含水合物地层钻井物理模拟试验。

    试验装置由水合物反应釜、注气供液系统、钻采模拟系统、高压井筒循环系统、数据采集及处理系统等部分组成。水合物反应釜主要用于制备和盛放含水合物沉积物,并在其中进行钻井模拟试验(图 5)。反应釜尺寸为Φ0.5 m×1 m,内容积为196.25 L,静态承压30 MPa。釜内温度由低温恒温水浴控制,通过在釜体外侧包裹的冷却水夹套内循环制冷液进行控温,温度控制范围为-20~30℃,控制精度0.5℃。釜内布置125个PT100铂电阻温度传感器和3个压力传感器,能够测量釜内的温度场分布及压力变化。使用气体增压泵和高压气体流量控制计从底部为反应釜注气增压,气体的质量流量控制范围为0~10 L/min。釜顶插入模拟井筒用于钻采过程模拟,井筒和反应釜之间采用滑动密封,动态承压20 MPa[13]

    钻井模拟系统由模拟井筒、井筒加载机构和高压井筒循环系统组成(图 45)。模拟井筒由N80双层钢管制成,内外管长度均为1 m,外管模拟表层导管,内管模拟钻杆,外管顶部连接井筒加载机构,能够匀速提升或者下放模拟井筒,内外管间的环空可以循环钻井液等流体,模拟深水喷射及钻井过程,管底布置软质防砂筛网,防止堵塞循环泵。外管顶部布置位移计测量外管的竖向位移,外管管壁每隔0.1 m集成布置全断面荷载传感器,土压力计及侧壁摩擦传感器,桩周土内埋设孔压计和土压力计,测量水合物分解过程中的表层导管的侧向摩阻力分布及管周土体的应力变化。所有传感器获取的温度、压力和位移数据通过计算机数据采集系统进行收集和保存。

    图  4  水合物层钻采模拟试验装置
    Figure  4.  Test device for drilling and production of hydrate
    图  5  水合物钻井模拟系统
    Figure  5.  Hydrate drilling simulation system

    (1)含水合物模拟地层制备

    由于原位天然气水合物样品稀少,每次试验所需的水合物用量很大,因此依据中国南海天然气水合物取样样品参数采用饱和法合成天然气水合物[14],中国南海含水合物地层主要为泥质粉砂,因此采用100目石英砂与1250目高岭土作为水合物模拟地层的骨架材料,质量配比为6︰4,由于反应釜体积较大,为使水合物分布均匀,将180 kg砂土混合物及20 kg去离子水混合均匀,并添加SDS粉末1 g加快水合物的生成过程,分15次填入反应釜中并振捣压实,测定压实后水合物模拟地层的含水饱和度为28%[15]。填砂完毕后将模拟表层导管和钻杆插入模拟地层0.1 m,然后关闭釜盖上法兰密封,使用气体增加泵注入纯度为99%的CH4气体增压至10 MPa,然后使用低温恒温水浴系统降低反应釜内温度,设置水浴温度为5℃,水浴循环2 h后反应釜内的温度降低至4~6℃,在温度降低的过程中水合物开始逐渐生成,不断补充CH4气体,待反应釜内压力不变时认为水合物已经完全饱和生成,静置24~48 h使釜内水合物稳定。

    (2)水合物分解前单位面积侧向摩阻力fs(z)测试

    水合物生成稳定后,控制表层导管以0.1 m/h的速度,缓慢匀速向下贯入含水合物模拟地层0.3 m,在此过程中可依据下式计算表层导管和含水合物地层的单位面积侧向摩阻力:

    fs(z)=P0+Pπ (D2pd2p)4π LDp (3)

    (3)水合物分解后承载力折减系数K测试

    水合物分解前单位面积侧向摩阻力fs(z)测试完成后,打开高压循环系统,在双层管环空内循环钻井液,同时控制表层导管以0.1 m/h的速度,缓慢匀速向下贯入含水合物模拟地层0.3 m,测试在喷射钻井水合物分解过程中的表层导管和含水合物地层侧向摩阻力fj(z),循环结束后分别静置一段时间后控制表层导管继续匀速向下贯入0.2 m,测定不同静置等候时间下的单位面积侧向摩阻力fh(z),其与fs(z)的比值即为水合物分解后的承载力折减系数K

    共进行了不同水合物饱和度(15.6%,19.3%,25.7%,30.8%,36.2%)及静置等候时间(12,24,36,48,60,72,84,96 h)下的测试试验48组,试验结果表明:纯水合物的承载力比海底土的承载力低,因此在不循环时,水合物的含量越高(饱和度越大),地层的承载力越小,随着循环开始,不同含量水合物地层的承载力都会降低。但是水合物含量越高的地层,承载力下降的幅度越大。水合物饱和度越大,水合物分解后的地层极限承载力近似呈线性下降,同不含水合物的地层相比,地层的承载力最大下降可达35%。建立含水合物地层侧向摩阻力恢复和静置等候时间的拟合关系曲线如图 6所示,拟合数学模型为

    K=0.0581lnt+0.198 (4)
    图  6  含水合物地层钻井过程承载力下降
    Figure  6.  Decrease of ultimate bearing capacity of hydrate formation during drilling

    根据以上的试验结论,针对引言中南海深水A1井进行表层导管下入深度设计及井口优选,南海A1井的浅部土质参数如表 1所示,根据式(1)及试验测得的水合物分解前单位面积承载力fh(z),以及承载力折减系数K同静置等候时间t的拟合公式(3),建立目标区块36in表层导管承载力剖面如图 7所示,设表层导管下入深度为L,井口载荷如表 2所示。

    表  1  海底土质参数
    Table  1.  Parameters of seabed soil
    顶部深度/m 底部深度/m 土体性质 重度
    /(kN·m-3)
    抗剪强度/kPa
    顶部 底部
    0.00 3.20 黏土 17.0 10 10
    3.30 5.90 黏土 17.0 10 25
    5.90 13.00 黏土 17.5 30 40
    13.00 23.00 黏土 17.5 40 50
    23.00 31.80 黏土 17.5 50 80
    31.80 58.00 水合物 18.4
    58.00 69.60 黏土 18.5 125 130
    69.60 75.80 黏土 19.0 125 130
    75.80 82.40 黏土 19.0 140 210
    82.40 128.00 黏土 19.5 260 350
    下载: 导出CSV 
    | 显示表格
    图  7  南海A1井外径914.4 mm不同静置时间表层导管承载力
    Figure  7.  Bearing capacities of 914.4 mm-conductor in South China Sea
    表  2  海底土质参数
    Table  2.  Wellhead loads
    低压井口头 重量/kN 浮重/kN
    防沉板 38.50 33.50
    CADA 23.13 20.12
    36in表层导管 5.46L~131.04 4.74L~114.00
    注:表层导管重量中的L为表层导管入泥深度(m)。
    下载: 导出CSV 
    | 显示表格

    根据图 8表 2的计算结果,对含水合物地层表层导管下入深度进行设计,结果如图 9所示,表层导管设计入泥深度为75 m的情况下,表层导管静置等候时间需超过40 h才能保持水下井口稳定,而常规深水钻井过程中的表层导管喷射后的静置等候时间通常为3 h左右,大大增加了作业成本并且后续作业过程中仍存在安全隐患。因此如果是在深水水合物开发或者水合物层的厚度过大时,可以考虑采用吸力桩井口增加表层导管的承载力,直径为6 m,下入深度为12 m的吸力桩井口的承载力可达600 t以上,而上文计算过程外径36in,80 m下入深度的表层导管仅能提供不足300 t的承载力,如果含有20~30 m厚度的水合物层,则水合物分解后能提供的承载力不足200 t,经计算直径为4,6,8 m,贯入深度12 m的吸力桩井口承载力如图 8所示,远远超过井口载荷,能够有效的满足井口稳定性的要求。

    图  8  不同直径的吸力桩井口承载力
    Figure  8.  Bearing capacities of wellhead of suction piles with different diameters
    图  9  表层导管喷射到位至解脱送入工具静置时间设计图版
    Figure  9.  Design results of standing up time of surface conductor

    (1)本文分析了水合物层的埋深较浅(在泥线以下90 m以内),在一开表层导管下入过程中会穿过水合物层;水合物层的埋深相对较深(在泥线以下90~300 m),水合物层在表层导管鞋下方,在二开钻进过程中会穿过水合物层2种水合物埋深和分布位置的水合物层分解对钻井导管承载力和井口稳定性的影响因素。其中一开表层导管下入穿过水合物层由于水合物分解区的强度近乎消散,地层的承载力及预期值低,因此井口下沉的风险最大。

    (2)开展了水合物钻井循环模拟试验,测得了水合物分解前后的单位面积承载力大小,试验结果表明:水合物饱和度越大,水合物分解后的地层极限承载力近似呈线性下降,同不含水合物的地层相比,地层极限承载力的下降幅度最大可达35%;静置等候时间对于水合物分解后的地层承载力的恢复影响很大,地层承载力在初期的1~12 h内增长明显,随后逐渐放缓,近似呈对数形式上升,并建立了静置等候时间同承载力折减系数的拟合公式。

    (3)对含27 m厚水合物层的南海A1井进行了表层导管下入深度设计和井口优选,分析结果表明:表层导管设计入泥深度为75 m的情况下,表层导管静置等候时间需超过40 h才能保持水下井口稳定,而直径为6 m,下入深度为12 m的吸力桩井口的承载力可达600 t以上,因此在含水合物层钻井过程中可以适当增加表层导管入泥深度,增加静置等候时间,或使用吸力桩井口提高承载力,防止井口下沉,本文为深水含水合物地层钻井设计及井口安全评估提供了理论基础。

    致谢: 感谢土力学和岩土工程界各位同行的信任,让笔者有幸成为今年黄文熙讲座的主讲人。笔者自1989年师从于顾晓鲁教授,开始了基坑工程领域的学习,建立了对岩土工程浓厚的兴趣,并持续至今,积累了一些粗浅的认识和工程经验。感谢团队刁钰副教授、程雪松副教授、周海祚副教授、张天奇副研究员、雷华阳教授、刘畅副教授,以及笔者的学生杜一鸣博士、李志伟博士、曾超峰副教授、魏少伟博士、刘景锦博士等对本文提供的巨大帮助!感谢笔者的博士生苏奕铭、黄建友、栗晴瀚、何晓佩、焦陈磊、甘伟等,他们对本文也提供了很多具体帮助。感谢深圳市工勘岩土集团有限公司雷斌先生为本文提供了三级支护工程图片。
  • 图  1   基坑支护结构及周边地层变形

    Figure  1.   Deformations of excavation retaining structures and soils

    图  2   地下连续墙成槽引起土体水平位移

    Figure  2.   Horizontal displacements of soils due to trenching

    图  3   某工程中群孔效应引发的周边建筑物沉降

    Figure  3.   Settlements of adjacent buildings induced by group borehole effects

    图  4   单孔和群孔成孔效应离心机试验

    Figure  4.   Centrifuge tests on single and group borehole effects

    图  5   单孔和群孔成孔引起地表沉降

    Figure  5.   Ground surface settlements induced by single and group borehole

    图  6   多孔合并前后地表曲线对比

    Figure  6.   Comparison of ground surface settlements with and without simplification of group borehole

    图  7   群孔效应多孔合并模拟简化方法示意

    Figure  7.   Simplified simulation of group borehole effects

    图  8   多孔合并示意图

    Figure  8.   Simplified simulation of group borehole effects

    图  9   监测点沉降模拟值和实测值对比

    Figure  9.   Comparison of measured and predicted settlements

    图  10   部分空孔回填控制群孔效应影响

    Figure  10.   Filling of partial boreholes to control group borehole effects

    图  11   基坑平面图

    Figure  11.   Plan of excavations

    图  12   基坑预降水引起地下连续墙变形

    Figure  12.   Wall deflections induced by pre-dewatering of excavations

    图  13   基坑预降水引起地下连续墙变形和建筑物沉降

    Figure  13.   Wall deflections induced by pre-dewatering of excavations

    图  14   某大面积基坑降水井及监测点平面布置

    Figure  14.   Plan of dewatering wells and field monitoring paints

    图  15   某大面积基坑预降水过程中围护结构变形情况

    Figure  15.   Wall deflections induced by pre-dewatering of excavations

    图  16   考虑预降水4个效应的变形计算模型

    Figure  16.   Deformation prediction model considering 4 effects of pre-excavation dewatering

    图  17   承压层抽水引发土体变形发展规律

    Figure  17.   Prediction model for deformation considering 4 effects of pre-dewatering of excavations

    图  18   基坑水平支撑平面和支护桩侧移变形监测点

    Figure  18.   Plan of structs and monitoring points of lateral displacements of retaining piles

    图  19   某基坑工程围护结构变形实测

    Figure  19.   Measured lateral deformations of retaining wall

    图  20   不同变形模式下坑外地表土体位移对比

    Figure  20.   Comparison of ground surface deformations under different lateral deformation modes of retaining wall

    图  21   围护结构不同变形模式下坑外深层土体沉降对比

    Figure  21.   Comparison of ground deformations behind retaining wall under different lateral deformation models of retaining wall

    图  22   某地铁车站基坑周边建筑情况

    Figure  22.   Plan view of surround buildings of metro station

    图  23   建筑物的三维沉降分布图

    Figure  23.   3D settlement distribution of building

    图  24   纵墙墙体拉应变最大值变化曲线

    Figure  24.   Variation of maximum tensile strain of longitudinal wall

    图  25   纵墙墙体拉应变最大值随角度变化曲线

    Figure  25.   Relationship between maximum tensile strain of longitudinal wall and arbitrary angle

    图  26   围护结构为内凸型模式时坑外不同位置处隧道变形

    Figure  26.   Deformations of tunnels at different locations caused by convex deformation of retaining structures

    图  27   围护结构不同变形模式下隧道变形影响区

    Figure  27.   Influenced zones determined by different profiles of deflection of retaining structures

    图  28   某实际工程隧道渗漏引发的沉降和错台

    Figure  28.   Settlements and dislocation of tunnel segments induced by leakage of water and soils

    图  29   隧道底部多点渗漏模拟试验

    Figure  29.   Model tests with multiple leakage points

    图  30   隧道底部两点渗漏模拟试验

    Figure  30.   Simulation test for two leakage points under tunnel

    图  31   隧道底部不同距离两点渗漏模拟试验

    Figure  31.   Results of two-leakage-point tests with different spacings

    图  32   不同砂土–黏土界面位置时隧道底部渗漏试验

    Figure  32.   Large-scale model tests considering position of sand-clay interface relative to tunnel

    图  33   漏水漏砂侵蚀大型模型试验结果

    Figure  33.   Erosion of sand due to inflow of sand and water

    图  34   悬臂式排桩桩顶位移比较

    Figure  34.   Comparison of displacements at cantilever pile top

    图  35   基坑与地铁平面图

    Figure  35.   Plan view of excavations and metro lines

    图  36   多种保护措施下左线隧道水平位移对比

    Figure  36.   Comparison of tunnel displacements with different types of protection measures

    图  37   基坑与地铁的平面图

    Figure  37.   Plan view of excavations and metro lines

    图  38   三期基坑分仓施工平面图

    Figure  38.   Plan of zoned excavation of 3rd stage excavation

    图  39   一期、二期基坑开挖时地铁结构Y4测点的水平位移

    Figure  39.   Horizontal displacements of metro structures at Y4 during 1st and 2nd stages of excavation

    图  40   主动控制的关键区域土体

    Figure  40.   Key soil zone to control deformation of structures to be protected

    图  41   袖阀管注浆对土体水平变形影响的试验布置图

    Figure  41.   Field tests on effect of TAM grouting on lateral displacement of soils

    图  42   注浆量及注浆距离对土体侧向变形的影响

    Figure  42.   Effects of grouting volume and distance on lateral displacement of soils

    图  43   超孔压及A点土体位移随时间发展曲线

    Figure  43.   Development of excess pore water pressure and horizontal displacement at point A with time

    图  44   袖阀管注浆对隧道位移控制现场试验

    Figure  44.   Field tests on effects of TAM grouting on control of deformation of tunnels

    图  45   隧道水平位移、水平收敛及随时间的变化规律

    Figure  45.   Development of horizontal displacement and convergence of tunnels with time due to TAM grouting

    图  46   注浆项目布置平面图及注浆孔

    Figure  46.   Plan view of grouting program and grouting holes

    图  47   注浆引起的隧道水平位移增量和水平收敛增量

    Figure  47.   Increments and convergence increments of horizontal displacement of tunnels caused by TAM grouting

    图  48   第一次注浆前后地铁隧道结构的水平位移

    Figure  48.   Horizontal displacements of metro structures before and after 1st TAM grouting

    图  49   工况4中4次注浆前后隧道的水平位移

    Figure  49.   Horizontal displacements of tunnel before and after 4 times of TAM grouting for case 4

    图  50   试验剖面布置图

    Figure  50.   Profile of field tests

    图  51   珠海成层土中袖阀管注浆引起土体水平位移

    Figure  51.   Horizontal displacements due to TAM grouting in stratified soils in Zhuhai

    图  52   试膨胀后的囊体

    Figure  52.   Expanded capsule after grouting

    图  53   珠海成层土中囊体扩张引起土体水平位移

    Figure  53.   Horizontal displacements due to capsule grouting in stratified soils in Zhuhai

    图  54   天津成层土中囊体扩张引起土体水平位移

    Figure  54.   Horizontal displacements due to capsule grouting in stratified soils in Tianjin

    图  55   囊体扩张对桩侧向变形控制现场试验

    Figure  55.   Field tests on lateral deformation of piles due to capsule expansion

    图  56   隧道与基坑关系及试验平、剖面布置图

    Figure  56.   Plan and profile of field test tunnel and excavation

    图  57   试验隧道水平位移控制量

    Figure  57.   Increments of horizontal displacement of tunnel

    图  58   囊体膨胀主动控制前后隧道Z1测点水平位移

    Figure  58.   Increments of lateral displacement of tunnel at Z1

    图  59   承压含水层回灌控沉

    Figure  59.   Settlement control by recharge of artesian aquifer

    图  60   基坑外各含水层典型观测井水位变化曲线

    Figure  60.   Variation of water level in aquifers during and after dewatering

    图  61   第Ⅰ微承压含水层回灌时各含水层水位变化曲线

    Figure  61.   Variation of water level in aquifer due to recharge of artesian aquifer Ⅰ

    图  62   基坑内开始抽水后对第Ⅰ微承压含水层回灌时各含水层水位变化曲线

    Figure  62.   Variation of water-level in aquifer due to recharge of artesian aquifer Ⅰ after commencement of dewatering inside diaphragm

    图  63   反压土支护

    Figure  63.   Retaining walls with earth berm

    图  64   考虑反压土作用的悬臂支护分析模型

    Figure  64.   Analysis model for cantilever retaining piles considering effects of earth berm

    图  65   双排桩平面杆系有限元模型

    Figure  65.   FEM model for double-row retaining piles

    图  66   多级支护形式

    Figure  66.   Types of multi-level retaining excavations

    图  67   二级支护和三级支护实例

    Figure  67.   Case histories of multi-level retaining excavations

    图  68   多级支护3种破坏模式

    Figure  68.   Failure modes of multi-level retaining excavations

    图  69   多级支护3种破坏模式与多级支护宽度关系

    Figure  69.   Failure modes of multi-level retaining excavations with respect to width

    图  70   倾斜桩支护

    Figure  70.   Inclined retaining piles

    图  71   砂土中竖直桩、倾斜桩、斜直组合支护桩模型试验

    Figure  71.   Model tests on inclined retaining piles in sand

    图  72   不同支护结构直桩桩身变形

    Figure  72.   Wall deformation of vertical wall for different retaining structures

    图  73   倾斜桩无支撑支护结构形式

    Figure  73.   Strut-free inclined retaining structures

    图  74   内撑式和无支撑支护结构变形对比

    Figure  74.   Comparison of deformations of strut-free inclined retaining piles and braced vertical retaining piles

    图  75   倾斜桩无支撑支护结构形式

    Figure  75.   Comparison of bending moments of strut-free inclined retaining piles and braced vertical retaining piles

    图  76   离心机试验实测与数值计算结果

    Figure  76.   Comparison of centrifuge tests and numerical analyses

    图  77   倾斜桩稳定破坏模式与倾斜角的关系

    Figure  77.   Variation of failure mode of inclined retaining piles with respect to angle of inclination

    图  78   桩身重度的影响

    Figure  78.   Effects of self-weight on ultimate depth of excavations

    图  79   抗倾覆稳定性计算模型

    Figure  79.   Analysis model for stability against overturning

    图  80   离心机验证

    Figure  80.   Validation of centrifuge tests

    图  81   7种试验工况极限挖深对比

    Figure  81.   Ultimate depths of excavations with different types of retaining structures

    图  82   不同支护结构变形图

    Figure  82.   Deformations of different types of retaining structures

    图  83   不同支护结构弯矩图

    Figure  83.   Bending moments of different types of retaining structures

    图  84   不同支护结构桩身轴力分布

    Figure  84.   Comparison of axial force

    图  85   不同支护方式受力机理图

    Figure  85.   The mechanism of different retaining structures

    图  86   不同支护形式的坑内土体隆起

    Figure  86.   Uplifts of soils in excavations with different strut forms

    图  87   不同约束条件下变形图

    Figure  87.   Wall deflection under different constraint conditions

    图  88   不同桩间土重对变形影响

    Figure  88.   Wall deflections under different soil weights

    图  89   斜直组合桩

    Figure  89.   Inclined-vertical retaining wall

    图  90   桩身水平位移实测数据

    Figure  90.   Measured horizontal wall deflections

    图  91   基坑支护剖面

    Figure  91.   Profile of retaining structures

    图  92   桩身水平位移曲线

    Figure  92.   Measured horizontal wall deflections

    图  93   现场照片

    Figure  93.   Photo of excavation

    表  1   土层物理和力学指标

    Table  1   Physical and mechanical parameters of soils

    层号 土层 层厚/m γ
    /(kN·m-3)
    w
    /%
    e φ
    /(°)
    c
    /kPa
    人工填土 3.66 17.5 10.0 8.0
    1 淤泥质砂土 7.97 20.0 17.9 0.549 22.6
    2 淤泥 8.80 15.2 77.8 2.079 1.5 2.1
    3 黏土 3.86 18.0 32.3 0.977 17.1 21.4
    4 淤泥质土 12.16 16.4 53.7 4.670 6.6 7.5
    5 粗砂 8.00 20.2 15.2 0.504 29.1
    下载: 导出CSV
  • [1] 郑刚, 朱合华, 刘新荣, 等. 基坑工程与地下工程安全及环境影响控制[J]. 土木工程学报, 2016, 49(6): 1–24. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606001.htm

    ZHENG Gang, ZHU He-hua, LIU Xin-rong, et al. Control of safety of deep excavations and underground engineering and its impact on surrounding environment[J]. China Civil Engineering Journal, 2016, 49(6): 1–24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606001.htm

    [2] 郑刚, 曾超峰. 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35(12): 2153–2163. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312002.htm

    ZHENG Gang, ZENG Chao-feng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153–2163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312002.htm

    [3] 曾超峰, 郑刚, 薛秀丽. 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39(6): 1012–1021. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706008.htm

    ZENG Chao-feng, ZHENG Gang, XUE Xiu-li. Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1012–1021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706008.htm

    [4] 曾超峰, 薛秀丽, 郑刚. 软土区基坑预降水引起支护墙侧移的典型参数影响研究[J]. 岩土力学, 2017, 38(11): 3295–3303, 3318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711028.htm

    ZENG Chao-feng, XUE Xiu-li, ZHENG Gang. A parametric study of lateral displacement of support wall induced by foundation pre-dewatering in soft ground[J]. Rock and Soil Mechanics, 2017, 38(11): 3295–3303, 3318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711028.htm

    [5]

    ZENG C F, ZHENG G, ZHOU X F, et al. Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths[J]. Computers and Geotechnics, 2019, 115: 103169. doi: 10.1016/j.compgeo.2019.103169

    [6]

    ZHENG G, CAO J R, CHENG X S, et al. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering[J]. Journal of Hydrology, 2018, 557: 868–877. doi: 10.1016/j.jhydrol.2018.01.020

    [7]

    ZENG C F, XUE X L, ZHENG G, et al. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system[J]. Journal of Hydrology, 2018, 559: 609–626. doi: 10.1016/j.jhydrol.2018.02.069

    [8] 郑刚, 曾超峰, 薛秀丽. 承压含水层局部降压引起土体沉降机理及参数分析[J]. 岩土工程学报, 2014, 36(5): 802–817. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405003.htm

    ZHENG Gang, ZENG Chao-feng, XUE Xiu-li. Settlement mechanism of soils induced by local pressure-relief of confined aquifer and parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 802–817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405003.htm

    [9]

    ZENG C F, ZHENG G, XUE X L, et al. Combined recharge: a method to prevent ground settlement induced by redevelopment of recharge wells[J]. Journal of Hydrology, 2019, 568: 1–11. doi: 10.1016/j.jhydrol.2018.10.051

    [10] 曹剑然. 天津地区基坑工程中承压层回灌控沉理论与技术研究[D]. 天津: 天津大学, 2018.

    CAO Jian-ran. Study on the Theory and Technology of Recharge and Subsidence Control of Confined Layer in Excavation Engineering in Tianjin Area[D]. Tianjin: Tianjin University, 2018. (in Chinese)

    [11] 郑刚, 曹剑然, 程雪松, 等. 天津第二粉土粉砂微承压含水层回灌试验研究[J]. 岩土工程学报, 2018, 40(4): 592–601. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804004.htm

    ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al. Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 592–601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804004.htm

    [12] 哈达, 朱敢平, 李竹, 等. 天津市承压含水层条件下地下连续墙深度优化[J]. 地下空间与工程学报, 2018, 14(2): 490–499. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802027.htm

    HA Da, ZHU Gan-ping, LI Zhu, et al. Underground diaphragm wall depth optimization considering the confined aquifer in Tianjin[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2): 490–499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201802027.htm

    [13] 孙宏宾, 郑刚, 程雪松, 等. 软土地区CFG桩群孔效应引发周边土体变形机理研究[J]. 石家庄铁道大学学报(自然科学版), 2018, 31(1): 39–46, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801008.htm

    SUN Hong-bin, ZHENG Gang, CHENG Xue-song, et al. Study on the mechanism of soil deformation caused by the borehole group effect of CFG piles in soft soil area[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2018, 31(1): 39–46, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801008.htm

    [14] 郑刚, 王若展, 程雪松, 等. 软土地区桩基施工群孔效应作用机理研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊1): 1–8.

    ZHENG Gang, WANG Ruo-zhan, CHENG Xue-song, et al. Mechanism of borehole group effect induced by pile foundation construction in soft soils[J]. Journal of Tianjin University (Science and Technology), 2019, 52(S1): 1–8. (in Chinese)

    [15] 郑刚, 李溪源, 王若展, 等. 群孔效应对周边环境影响的控制措施研究[J]. 石家庄铁道大学学报(自然科学版), 2020, 33(2): 8–15. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202002003.htm

    ZHENG Gang, LI Xi-yuan, WANG Ruo-zhan, et al. Research on control measures of influence of borehole group on surrounding environment[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(2): 8–15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT202002003.htm

    [16] 李姝婷. 地下连续墙施工引起的土体变形实测与数值分析研究[D]. 天津: 天津大学, 2014.

    LI Shu-ting. Field Monitoring and Numerical Analysis of Ground Movements due to Diaphragm Wall Installation[D]. Tianjin: Tianjin University, 2014. (in Chinese)

    [17] 郑刚, 邓旭, 刘畅, 等. 不同维护结构变形模式对坑外深层土体位移场影响的对比分析[J]. 岩土工程学报, 2014, 36(2): 273–285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402003.htm

    ZHENG Gang, DENG Xu, LIU Chang, et al. Comparative analysis of influences of different deformation modes of retaining structures on displacement field of deep soils outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 273–285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402003.htm

    [18] 龚晓南. 深基坑工程设计施工手册[M]. 北京: 中国建筑工业出版社, 1998.

    GONG Xiao-nan. Construction Design Manual of Deep Excavation[M]. Beijing: China Architecture & Building Press, 1998. (in Chinese)

    [19] 郑刚, 李志伟. 不同围护结构变形形式的基坑开挖对邻近建筑物的影响对比分析[J]. 岩土工程学报, 2012, 34(6): 969–977. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206003.htm

    ZHENG Gang, LI Zhi-wei. Comparative analysis of responses of buildings adjacent to excavations with different deformation modes of retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 969–977. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206003.htm

    [20] 郑刚, 李志伟. 基坑开挖对邻近不同楼层建筑物影响的有限元分析[J]. 天津大学学报, 2012, 45(9): 829–837. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201209015.htm

    ZHENG Gang, LI Zhi-wei. Finite element analysis of response of building with different storeys adjacent to pit excavation[J]. Journal of Tianjin University, 2012, 45(9): 829–837. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201209015.htm

    [21] 郑刚, 王琦, 邓旭, 等. 不同围护结构变形模式对坑外既有隧道变形影响的对比分析[J]. 岩土工程学报, 2015, 37(7): 1181–1194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507004.htm

    ZHENG Gang, WANG Qi, DENG Xu, et al. Comparative analysis of influences of different deformation modes of retaining structures on deformation of existing tunnels outside excavations[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1181–1194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201507004.htm

    [22] 郑刚, 李志伟. 基坑开挖对邻近任意角度建筑物影响的有限元分析[J]. 岩土工程学报, 2012, 34(4): 615–624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204008.htm

    ZHENG Gang, LI Zhi-wei. Finite element analysis of response of buildings with arbitrary angle adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 615–624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204008.htm

    [23] 城市轨道交通结构安全保护技术规范: GJJ/T 202—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Technical Specification for Structural Safety Protection of Urban Rail Transit: GJJ/T 202—2013[S]. China Architecture & Building Press, 2013. (in Chinese)

    [24]

    ZHENG G, TONG J B, ZHANG T Q, et al. Progression of backward erosion piping with sudden and gradual hydraulic loads[J]. Acta Geotechnica, 2021: 1–7.

    [25]

    VAN BEEK V M, BEZUIJEN A, SELLMEIJER J B, et al. Initiation of backward erosion piping in uniform sands[J]. Géotechnique, 2014, 64(12): 927–941. doi: 10.1680/geot.13.P.210

    [26]

    VAN BEEK V M, VAN ESSEN H M, VANDENBOER K, et al. Developments in modelling of backward erosion piping[J]. Géotechnique, 2015, 65(9): 740–754. doi: 10.1680/geot.14.P.119

    [27]

    VANDENBOER K, VAN BEEK V M, BEZUIJEN A. 3D character of backward erosion piping[J]. Géotechnique, 2018, 68(1): 86–90. doi: 10.1680/jgeot.16.P.091

    [28] 郑刚, 程雪松. 长短桩组合排桩悬臂支护工作机理试验研究[J]. 岩土工程学报, 2008, 30(增刊1): 410–415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1089.htm

    ZHENG Gang, CHENG Xue-song. Experimental study on cantilever contiguous retaining piles with different lengths[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 410–415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1089.htm

    [29] 李竹, 郑刚, 王海旭. 带水平支撑长短桩组合排桩工作性状模型试验研究[J]. 岩土工程学报, 2010, 32(增刊1): 440–446. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1087.htm

    LI Zhu, ZHENG Gang, WANG Hai-xu. Model tests on work behaviors of retaining piles with different lengths and horizontal support[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 440–446. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1087.htm

    [30]

    CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224–235. doi: 10.1016/j.tust.2016.06.002

    [31] 王卫东, 沈健, 翁其平, 等. 基坑工程对邻近地铁隧道影响的分析与对策[J]. 岩土工程学报, 2006, 28(增刊1): 1340–1345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1006.htm

    WANG Wei-dong, SHEN Jian, WENG Qi-ping, et al. Analysis and countermeasures of influence of excavation on adjacent tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1340–1345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1006.htm

    [32] 郑刚, 潘军, 程雪松, 等. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181–1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907002.htm

    ZHENG Gang, PAN Jun, CHENG Xue-song, et al. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181–1190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907002.htm

    [33]

    ZHENG G, PAN J, CHENG X S, et al. Use of grouting to control horizontal tunnel deformation induced by adjacent excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(7): 05020004. doi: 10.1061/(ASCE)GT.1943-5606.0002276

    [34] 秦宏亮. 钢支撑轴力伺服系统技术在基坑开挖中的应用[J]. 建筑施工, 2019, 41(7): 1195–1198. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSG201907005.htm

    QIN Hong-liang. Application of steel support axis force servo system technology to foundation pit excavation[J]. Building Construction, 2019, 41(7): 1195–1198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZSG201907005.htm

    [35]

    DIAO Y, BI C, DU Y M, et al. Greenfield test and numerical study on grouting in silty clay to control horizontal displacement of underground facilities[J]. International Journal of Geomechanics, 2021, 21(10): 04021178. doi: 10.1061/(ASCE)GM.1943-5622.0002140

    [36] 刁钰, 李光帅, 郑刚. 一种控制土体变形的单点囊式注浆装置: CN208235526U[P]. 2018-12-14.

    DIAO Yu, LI Guang-shuai, ZHENG Gang. Single-Point Capsule Grouting Device to Control Soil Deformation: CN208235526U[P]. 2018-12-14. (in Chinese)

    [37] 刁钰, 杨超, 郑刚. 一种控制土体变形的多点囊式注浆装置及其方法: CN208235526U[P]. 2018-12-14.

    DIAO Yu, Yang Chao, ZHENG Gang. Multiple-Point Capsule Grouting Device to Control Soil Deformation Device: CN208235524U[P]. 2018-12-14. (in Chinese)

    [38]

    ZHENG G, SU Y M, DIAO Y, et al. Field measurements and analysis of real-time capsule grouting to protect existing tunnel adjacent to excavation[J]. Tunnelling and Underground Space Technology, 2021, 122: 104350.

    [39]

    ZHENG G, HUANG J Y, DIAO Y, et al. Formulation and performance of slow-setting cement-based grouting paste (SCGP) for capsule grouting technology using orthogonal test[J]. Construction and Building Materials, 2021, 302: 124204. doi: 10.1016/j.conbuildmat.2021.124204

    [40] 曾超峰, 薛秀丽, 郑刚. 基坑工程长期地下水回灌控沉应注意的几个问题[J]. 土木工程学报, 2019, 52(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S2018.htm

    ZENG Chao-feng, XUE Xiu-li, ZHENG Gang. Problems needed to be noticed for artificial recharge in deep excavation for settlement control[J]. China Civil Engineering Journal, 2019, 52(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S2018.htm

    [41] 郑刚, 哈达, 程雪松, 等. 回灌开启时间对地层沉降与应力应变的影响[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(2): 180–191. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202002009.htm

    ZHENG Gang, HA Da, CHENG Xue-song, et al. Impact of recharge wells' opening time on the subsidence, stress, and strain of soil[J]. Journal of Tianjin University (Science and Technology), 2020, 53(2): 180–191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202002009.htm

    [42]

    HA D, ZHENG G, ZHOU H Z, et al. Estimation of hydraulic parameters from pumping tests in a multiaquifer system[J]. Underground Space, 2020, 5(3): 210–222. doi: 10.1016/j.undsp.2019.03.006

    [43] 郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491–495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2084.htm

    ZHENG Gang, ZENG Chao-feng, LIU Chang, et al. Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491–495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2084.htm

    [44] 郑刚, 曹剑然, 程雪松, 等. 考虑承压含水层间越流的地下水回灌现场试验研究[J]. 岩土工程学报, 2019, 41(9): 1609–1618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909005.htm

    ZHENG Gang, CAO Jian-ran, CHENG Xue-song, et al. Field tests on groundwater recharge considering leakage between semiconfined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1609–1618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909005.htm

    [45] 岳清瑞. 钢结构与可持续发展[J]. 建筑, 2021(13): 20–21, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-JANZ202113007.htm

    YUE Qing-rui. Steel structure and sustainable development[J]. Construction and Architecture, 2021(13): 20–21, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JANZ202113007.htm

    [46] 郑刚, 陈红庆, 雷扬, 等. 基坑开挖反压土作用机制及其简化分析方法研究[J]. 岩土力学, 2007, 28(6): 1161–1166. doi: 10.3969/j.issn.1000-7598.2007.06.018

    ZHENG Gang, CHEN Hong-qing, LEI Yang, et al. A study of mechanism of earth berm and simplified analysis method for excavation[J]. Rock and Soil Mechanics, 2007, 28(6): 1161–1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.06.018

    [47] 李顺群, 郑刚, 王英红. 反压土对悬臂式支护结构嵌固深度的影响研究[J]. 岩土力学, 2011, 32(11): 3427–3431, 3436. doi: 10.3969/j.issn.1000-7598.2011.11.037

    LI Shun-qun, ZHENG Gang, WANG Ying-hong. Influence of earth berm on embedment depth of cantilever retaining structure for pit excavation[J]. Rock and Soil Mechanics, 2011, 32(11): 3427–3431, 3436. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.037

    [48] 郑刚, 李欣, 刘畅, 等. 考虑桩土相互作用的双排桩分析[J]. 建筑结构学报, 2004, 25(1): 99–106. doi: 10.3321/j.issn:1000-6869.2004.01.014

    ZHENG Gang, LI Xin, LIU Chang, et al. Analysis of double-row piles in consideration of the pile-soil interaction[J]. Journal of Building Structures, 2004, 25(1): 99–106. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.01.014

    [49] 郑刚, 郭一斌, 聂东清, 等. 大面积基坑多级支护理论与工程应用实践[J]. 岩土力学, 2014, 35(增刊2): 290–298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm

    ZHENG Gang, GUO Yi-bin, NIE Dong-qing, et al. Theory of multi-bench retaining for large area foundation pit and its engineering application[J]. Rock and Soil Mechanics, 2014, 35(S2): 290–298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm

    [50]

    ZHOU H Z, ZHENG G, HE X P, et al. Numerical modelling of retaining structure displacements in multi-bench retained excavations[J]. Acta Geotechnica, 2020, 15(9): 2691–2703. doi: 10.1007/s11440-020-00947-3

    [51] 郑刚, 程雪松, 刁钰. 无支撑多级支护结构稳定性与破坏机理分析[J]. 天津大学学报, 2013, 46(4): 304–314. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201304005.htm

    ZHENG Gang, CHENG Xue-song, DIAO Yu. Analysis of the stability and collapse mechanism of non-prop and multi-stage retaining structure[J]. Journal of Tianjin University, 2013, 46(4): 304–314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201304005.htm

    [52] 任望东, 张同兴, 张大明, 等. 深基坑多级支护破坏模式及稳定性参数分析[J]. 岩土工程学报, 2013, 35(增刊2): 919–922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm

    REN Wang-dong, ZHANG Tong-xing, ZHANG Da-ming, et al. Parametric analysis of failure modes and stability of muti-level retaining structure in deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 919–922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm

    [53] 郑刚, 聂东清, 刁钰, 等. 基坑多级支护破坏模式研究[J]. 岩土力学, 2017, 38(增刊1): 313–322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm

    ZHENG Gang, NIE Dong-qing, DIAO Yu, et al. Failure mechanism of multi-bench retained foundation pit[J]. Rock and Soil Mechanics, 2017, 38(S1): 313–322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm

    [54] 郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784–794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm

    ZHENG Gang, NIE Dong-qing, CHENG Xue-song, et al. Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 784–794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm

    [55] 刘杰, 郑刚, 聂东清. 天津软土地区深基坑多级支护结构变形的参数分析[J]. 石家庄铁道大学学报(自然科学版), 2018, 31(1): 47–54. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801009.htm

    LIU Jie, ZHENG Gang, NIE Dong-qing. Parametric analysis on deformation of multi-bench retaining system of deep foundation pit in Tianjin soft ground area[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2018, 31(1): 47–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201801009.htm

    [56] 郑刚, 白若虚. 倾斜单排桩在水平荷载作用下的性状研究[J]. 岩土工程学报, 2010, 32(增刊1): 39–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm

    ZHENG Gang, BAI Ruo-xu. Behaviors study of inclined single row contiguous retaining piles under horizontal force[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 39–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm

    [57]

    DIAO Y, ZHU P Y, JIA Z Y, et al. Stability analysis and safety factor prediction of excavation supported by inclined piles in clay[J]. Computers and Geotechnics, 2021, 140: 104420. doi: 10.1016/j.compgeo.2021.104420

    [58] 周海祚, 郑刚, 何晓佩, 等. 基坑倾斜桩支护稳定特性及分析方法研究[J/OL]. 岩土工程学报: 1-8. [2021-12-02]. http://kns.cnki.net/kcms/detail/32.1124.tu.20210809.1654.004.html.

    ZHOU Hai-zuo, ZHENG Gang, HE Xiao-pei, et al. Study on stability characteristics and analysis method of inclined retaining walls in excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 1-8. [2021-12-02]. http://kns.cnki.net/kcms/detail/32.1124.tu.20210809.1654.004.html. (in Chinese)

    [59] 郑刚, 王玉萍, 程雪松, 等. 基坑倾斜桩支护性能及机理大型模型试验研究[J]. 岩土工程学报, 2021, 43(9): 1581–1591. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109003.htm

    ZHENG Gang, WANG Yu-ping, CHENG Xue-song, et al. Large-scale model tests on performance and mechanism of inclined retaining structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1581–1591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109003.htm

    [60] 郑刚, 何晓佩, 周海祚, 等. 基坑斜-直交替支护桩工作机理分析[J]. 岩土工程学报, 2019, 41(增刊1): 97–100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1026.htm

    ZHENG Gang, HE Xiao-pei, ZHOU Hai-zuo, et al. Working mechanism of inclined-vertical retaining piles in excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 97–100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1026.htm

    [61] 郑刚, 吴小波, 周海祚, 等. 基坑倾斜桩无支撑支护机理与工程应用[J]. 施工技术, 2021, 50(13): 157–162, 178.

    ZHENG Gang, WU Xiao-bo, ZHOU Hai-zuo, et al. Supporting method and applications of incline retaining piles in foundation excavation[J]. Construction Technology, 2021, 50(13): 157–162, 178. (in Chinese)

图(93)  /  表(1)
计量
  • 文章访问数:  1237
  • HTML全文浏览量:  140
  • PDF下载量:  881
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2021-12-31

目录

/

返回文章
返回