Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

南海北部陆坡区深海软土宏微观特征与力学特性研究

蒋明镜, 刘阿森, 李光帅

蒋明镜, 刘阿森, 李光帅. 南海北部陆坡区深海软土宏微观特征与力学特性研究[J]. 岩土工程学报, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081
引用本文: 蒋明镜, 刘阿森, 李光帅. 南海北部陆坡区深海软土宏微观特征与力学特性研究[J]. 岩土工程学报, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081
JIANG Mingjing, LIU A'sen, LI Guangshuai. Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081
Citation: JIANG Mingjing, LIU A'sen, LI Guangshuai. Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081

南海北部陆坡区深海软土宏微观特征与力学特性研究  English Version

基金项目: 

国家自然科学基金重大项目 51890911

国家重点研发计划项目 2019YFC0312304

海南省重点研发计划项目 ZDYF2021SHFZ264

详细信息
    作者简介:

    蒋明镜(1965—),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏微观试验、本构模型和数值分析研究。E-mail: mingjing.jiang@mail.usts.edu.cn

  • 中图分类号: TU447

Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea

  • 摘要: 针对中国南海深海软土的研究对于南海资源开发利用具有重要意义。由于取样困难,目前针对深海软土的研究较少,另外深海软土赋存环境特殊,其特性与常规软土有显著差异。通过基础物化特性试验、环境电镜扫描(ESEM)、一维固结及蠕变试验、常规三轴试验、对南海深海软土的材料特性、微观结构、压缩及蠕变特性、三轴剪切特性进行研究分析。试验结果表明该深海软土具有高含水率、低密度、高孔隙比、高饱和度的特点,为高液限粉土,矿物成分中以方解石和伊利石为主。电镜扫描结果显示该深海软土呈片状层理堆积结构,存在疏松架空骨架和贯通孔隙,能储存大量孔隙水,土体中存在生物残骸。一维固结及蠕变试验中,深海软土压缩性强,次固结变形大,固结系数随着竖向压力的增加而减小,次固结系数随着竖向压力的增加先增大后减小。在固结不排水三轴试验中,该深海软土表现出应变硬化特征,有效应力路径呈现先加载后卸载的特征,固结排水三轴试验中,应变硬化的特征更显著,有效应力路径呈现持续加载的特征。
    Abstract: The research on deep-sea sediment is meaningful for the exploitation and utilization of resources in the South China sea. Because of the difficulties in getting the natural deep-sea sediment, there are scarce researches on it. Besides, the mechanical properties and microstructures of the deep-sea sediment are different from the ordinary soft soil due to the unique geological environment. In this study, the basic material tests, ESEM tests, oedometer tests, 1D creep tests and conventional triaxial tests are conducted to investigate the material properties, microstructures, compression and creep characteristics and shear strengths of the deep-sea sediment. As shown in the results, the deep-sea sediment is a kind of silt with a high liquid limit, high water content, low bulk density, large void ratio and high saturation. The analysis of mineral composition shows calcite and illite are abundant. The micro-pictures show a lamellar layered stacked structure with loose skeleton and large pores, which attributes to the large void ratio and high water content, and there are some biological remains. In the oedometer and 1D creep tests, the deep-sea sediment shows high compressibility and large secondary consolidation deformation. The consolidation coefficient decreases with the vertical pressure, while the secondary consolidation coefficient ascends with the vertical pressure and then decreases after reaching the peak value. In the conventional triaxial tests, the deep-sea sediment shows strain hardening. The stress path from the consolidated undrained shear tests shows both loading and unloading processes, while only the loading process is found in the consolidated drained shear tests.
  • 图  1   原状深海软土及各试验用土的含水率及在PVC管中的位置

    Figure  1.   Pictures of natural deep-sea sediment and its water contents in different areas

    图  2   原状深海软土环境电镜扫描图片

    Figure  2.   SEM images of microstructure of natural deep-sea sediment

    图  3   孔隙比与竖向压力lgp关系

    Figure  3.   Void ratio versus vertical pressure (lgp)

    图  4   各级荷载下应变与时间lgt关系

    Figure  4.   Strain versus time (lgt) under different vertical pressures

    图  5   应力-应变等时曲线

    Figure  5.   Stress-strain relation curves at different time

    图  6   各级荷载下试样高度和时间(t)的关系

    Figure  6.   Height of sample versus time (t) under different vertical pressures

    图  7   不同软土固结系数与竖向压力的关系曲线

    Figure  7.   Consolidation coefficient versus vertical pressure of different soils

    图  8   各级荷载下孔隙比和时间(lgt)的关系

    Figure  8.   Void ratio versus time (lgt) under different vertical pressures

    图  9   不同软土次固结系数和竖向压力的关系

    Figure  9.   Secondary consolidation coefficient versus vertical pressure of different soils

    图  10   lgp-lgp/lgCα关系

    Figure  10.   lgp-lgp/lgCα relation

    图  11   CU中不同围压下偏应力-应变曲线

    Figure  11.   Deviatoric stress-strain relation curves under different confining pressures in CU tests

    图  12   CU中不同围压下孔压-应变曲线

    Figure  12.   Pore pressure-strain relation curves under different confining pressures in CU tests

    图  13   CU中有效应力路径

    Figure  13.   Effective stress paths under different confining pressures in CU tests

    图  14   CD中不同围压下偏应力-应变曲线

    Figure  14.   Deviatoric stress-strain relation curves under different confining pressures in CD tests

    图  15   CD中不同围压下孔压-应变曲线

    Figure  15.   Pore pressure-strain relation curves under different confining pressures in CD tests

    图  16   CD中有效应力路径

    Figure  16.   Effective stress paths under different confining pressures in CD tests

    图  17   CU和CD中峰值偏应力和围压的关系

    Figure  17.   Peak deviatoric stresses under different confining pressures in CU and CD tests

    表  1   土体基本物化特性

    Table  1   Basic material properties of soils

    文献 水深/m 含水率/% 天然密度/(g·cm-3) 相对质量密度 孔隙比 干密度/(g·cm-3) pH 有机质含量/% 饱和度/%
    刘文涛[17] 400~2500 110.90 1.41 2.73 3.11 97.11
    蒋明镜等[18] 1187 74.20 1.53 2.66 2.03 0.88 97.40
    Wang等[20] 96.70 2.71
    本文 1552 137.87 1.35 2.71 3.79 0.57 7.7 16.53 98.58
    下载: 导出CSV

    表  2   土体界限含水率及粒径组成

    Table  2   Limit water contents and grain-size distribution

    文献 液限
    wL/%
    塑限
    wP/%
    塑性指数
    IP
    液性指数
    IL
    土样分类 砂砾 粉粒 黏粒
    2~0.25 mm 0.25~0.075 mm 0.075~0.005 mm <0.005 mm
    刘文涛[17] 85.07 44.68 40.40 1.64 MH(86);CH(4) 1.49 1.83 59.44 35.65
    蒋明镜等[18] 60.20 40.90 19.30 1.71 MH 3.91 4.79 58.80 32.50
    Wang等[20] 92.10 14.20 77.90 1.06 CH 0 0.13 69.20 30.60
    本文 73.06 57.29 15.77 5.11 MH 0 0 66.90 33.10
    注:MH代表高液限粉土,CH代表高液限黏土;括号里数字代表试样个数。
    下载: 导出CSV

    表  3   土体矿物成分

    Table  3   Mineral composition

    非黏土矿物含量/% 黏土矿物含量/%
    石英 钾长石 斜长石 方解石 石盐 蒙脱石 伊利石 高岭石 绿泥石
    21.0 1.6 8.4 25.3 3.0 4.1 21.5 7.2 7.9
    下载: 导出CSV

    表  4   不同土体压缩指标对比

    Table  4   Compression parameters of different soils

    位置 文献 压缩指数
    Cc
    回弹指数
    Cs
    压缩系数
    a1-2/(MPa-1)
    压缩模量
    Es, 1-2/MPa
    深海 刘文涛等[17] 2.28~3.57 1.16~1.64
    蒋明镜等[18] 0.630 0.056 1.88
    0.610 0.096 1.90
    Wang等[20] 0.450 1.29 1.80
    本文 1.317 0.076 4.05 0.92
    近海 张惠明等[7] 1.01~2.30
    陈晓平等[9] 0.83
    下载: 导出CSV

    表  5   不同地区软土Cc/Cα范围

    Table  5   Cc/Cα of different soft soils from different areas

    文献 土体类型 Cc/Cα范围
    天津[6] 淤泥质黏土 0.0065~0.0143
    宁波[10] 淤泥质/粉质黏土 0.00156~0.0567
    大连[12] 淤泥质黏土 0.052~0.065
    广州[13] 软土 0.027~0.037
    本文 粉质黏土 0.0343~0.0632
    下载: 导出CSV

    表  6   抗剪强度指标

    Table  6   Strength parameters obtained by triaxial tests

    类型 总黏聚力
    c/kPa
    总内摩擦角
    φ/(°)
    有效黏聚力
    c/kPa
    有效内摩擦角
    φ/(°)
    CU 8.33 15.25 12.75 25.34
    CD 19.84 23.89 16.92 25.20
    刘文涛等[17]
    CU
    2.33~4.5 10.78~14.57 1.33~3.5 20~27.2
    蒋明镜等[18]
    CU
    3.45 32.20 1.99 38.20
    下载: 导出CSV
  • [1] 公衍芬, 杨文斌, 谭树东. 南海油气资源综述及开发战略设想[J]. 海洋地质与第四纪地质, 2012, 32(5): 137-147.

    GONG Yanfen, YANG Wenbin, TAN Shudong. Oil and gas resources in the South China Sea and its development strategy: a review[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 137-147. (in Chinese)

    [2] 张荷霞, 刘永学, 李满春, 等. 南海中南部海域油气资源开发战略价值评价[J]. 资源科学, 2013, 35(11): 2142-2150.

    ZHANG Hexia, LIU Yongxue, LI Manchun, et al. Strategic value assessment of oil and gas exploitation in the central and southern South China Sea[J]. Resources Science, 2013, 35(11): 2142-2150. (in Chinese)

    [3] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.

    YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1-14. (in Chinese)

    [4] 王友华, 王文海, 蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术, 2011, 39(2): 50-55.

    WANG Youhua, WANG Wenhai, JIANG Xingxun. South China Sea deepwater drilling challenges and solutions[J]. Petroleum Drilling Techniques, 2011, 39(2): 50-55. (in Chinese)

    [5] 吉锋, 徐桂中, 曹玉鹏, 等. 高含水率疏浚淤泥平板贯入剪切强度试验研究[J]. 岩土工程学报, 2012, 34(9): 1753-1757. http://cge.nhri.cn/cn/article/id/14707

    JI Feng, XU Guizhong, CAO Yupeng, et al. Plate penetration tests on undrained strength behavior of dredged clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1753-1757. (in Chinese) http://cge.nhri.cn/cn/article/id/14707

    [6] 雷华阳, 肖树芳. 天津软土的次固结变形特性研究[J]. 工程地质学报, 2002, 10(4): 385-389.

    LEI Huayang, XIAO Shufang. Study on secondary-consolidation deformation characteristics of soft soil in Tianjin[J]. Journal of Engineering Geology, 2002, 10(4): 385-389. (in Chinese)

    [7] 张惠明, 徐玉胜, 曾巧玲. 深圳软土变形特性与工后沉降[J]. 岩土工程学报, 2002, 24(4): 509-514. http://cge.nhri.cn/cn/article/id/11015

    ZHANG Huiming, XU Yusheng, ZENG Qiaoling. Deformation behavior of Shenzhen soft clay and post-construction settlement[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 509-514. (in Chinese) http://cge.nhri.cn/cn/article/id/11015

    [8] 余湘娟, 殷宗泽, 董卫军. 荷载对软土次固结影响的试验研究[J]. 岩土工程学报, 2007, 29(6): 913-916. http://cge.nhri.cn/cn/article/id/12526

    YU Xiangjuan, YIN Zongze, DONG Weijun. Influence of load on secondary consolidation deformation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 913-916. (in Chinese) http://cge.nhri.cn/cn/article/id/12526

    [9] 陈晓平, 曾玲玲, 吕晶, 等. 结构性软土力学特性试验研究[J]. 岩土力学, 2008, 29(12): 3223-3228.

    CHEN Xiaoping, ZENG Lingling, LÜ Jing, et al. Expeimental study of mechanical behavior of structured clay[J]. Rock and Soil Mechanics, 2008, 29(12): 3223-3228. (in Chinese)

    [10] 刘用海, 李水明, 俞伯华. 宁波软土次固结特性试验研究[J]. 土工基础, 2009, 23(3): 77-79, 95.

    LIU Yonghai, LI Shuiming, YU Bohua. Experimental study on secondary consolidation characteristics of Soft Clay in Ningbo[J]. Soil Engineering and Foundation, 2009, 23(3): 77-79, 95. (in Chinese)

    [11] 张志敏, 王常明, 张兆楠. 天津淤泥质粉质黏土一维固结蠕变特性[J]. 中国水运(下半月), 2014, 14(6): 216-217, 303.

    ZHANG Zhimin, WANG Changming, ZHANG Zhaonan. One-dimensional consolidation creep characteristics of muddy silty clay in Tianjin[J]. China Water Transport, 2014, 14(6): 216-217, 303. (in Chinese)

    [12] 刘伽, 罗滔, 刘洋, 等. 海相沉积土一维蠕变试验与经验模型研究[J]. 武汉大学学报(工学版), 2019, 52(8): 703-709, 715.

    LIU Jia, LUO Tao, LIU Yang, et al. Study of one-dimensional creep test and empirical model of marine deposit soils[J]. Engineering Journal of Wuhan University, 2019, 52(8): 703-709, 715. (in Chinese)

    [13] 陈晓平, 朱鸿鹄, 张芳枝, 等. 软土变形时效特性的试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2142-2148.

    CHEN Xiaoping, ZHU Honghu, ZHANG Fangzhi, et al. Experimental study on time-dependent deformation of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2142-2148. (in Chinese)

    [14] 孔令伟, 吕海波, 汪稔, 等. 海口某海域软土工程特性的微观机制浅析[J]. 岩土力学, 2002, 23(1): 36-40.

    KONG Lingwei, LÜ Haibo, WANG Ren, et al. Preliminary analysis of micro-mechanism of engineering properties for soft soil in a sea area of Haikou[J]. Rock and Soil Mechanics, 2002, 23(1): 36-40. (in Chinese)

    [15] 周晖, 房营光, 禹长江. 广州软土固结过程微观结构的显微观测与分析[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3830-3837.

    ZHOU Hui, FANG Yingguang, YU Changjiang. Micro-structure observation and analysis of Guangzhou soft soil during consolidation process[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3830-3837. (in Chinese)

    [16] 张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142.

    ZHANG Xianwei, KONG Lingwei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese)

    [17] 刘文涛, 石要红, 张旭辉, 等. 西沙海槽东部海底浅表层土工程地质特性及水合物细粒土力学性质试验[J]. 海洋地质与第四纪地质, 2014, 34(3): 39-47.

    LIU Wentao, SHI Yaohong, ZHANG Xuhui, et al. Geotechnical features of the seabed soils in the east of Xisha trough and the mechanical properties of gas hydrate-bearing fine deposits[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 39-47. (in Chinese)

    [18] 蒋明镜, 李志远, 黄贺鹏, 等. 南海软土微观结构与力学特性试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 17-20. doi: 10.11779/CJGE2017S2005

    JIANG Mingjing, LI Zhiyuan, HUANG Hepeng, et al. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 17-20. (in Chinese) doi: 10.11779/CJGE2017S2005

    [19] 年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602-611. doi: 10.11779/CJGE201804003

    NIAN Tingkai, FAN Ning, JIAO Houbin, et al. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602-611. (in Chinese) doi: 10.11779/CJGE201804003

    [20]

    WANG L, LEI H Y, BO Y, et al. Geotechnical behavior of soft dredger fill and deep sea soft clay[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(6): 062036.

    [21] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [22]

    MESRI G, GODLEWSKI P M. Time- and stress-compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.

  • 期刊类型引用(1)

    1. 梁靖宇,齐吉琳,张跃东,路德春,李昊雯. 考虑温度与围压影响的冻结砂土非正交弹塑性本构模型. 岩土工程学报. 2024(09): 1889-1898 . 本站查看

    其他类型引用(5)

图(17)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-01-16
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回