• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

安康机场罗家河膨胀土高填方沉降变形特征研究

安鹏, 张杰, 倪万魁, 马新超, 胡兴群, 张昌波

安鹏, 张杰, 倪万魁, 马新超, 胡兴群, 张昌波. 安康机场罗家河膨胀土高填方沉降变形特征研究[J]. 岩土工程学报, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071
引用本文: 安鹏, 张杰, 倪万魁, 马新超, 胡兴群, 张昌波. 安康机场罗家河膨胀土高填方沉降变形特征研究[J]. 岩土工程学报, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071
AN Peng, ZHANG Jie, NI Wankui, MA Xinchao, HU Xingqun, ZHANG Changbo. Settlement and deformation characteristics of high fill of Luojiahe expansive soil in Ankang Airport[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071
Citation: AN Peng, ZHANG Jie, NI Wankui, MA Xinchao, HU Xingqun, ZHANG Changbo. Settlement and deformation characteristics of high fill of Luojiahe expansive soil in Ankang Airport[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071

安康机场罗家河膨胀土高填方沉降变形特征研究  English Version

基金项目: 

安康市科学技术研究发展计划项目 AK2019SF-03

详细信息
    作者简介:

    安鹏(1985—),男,博士,副教授,主要从事特殊土的工程性质与应用研究工作。E-mail: anpeng110@163.com

    通讯作者:

    倪万魁, E-mail: nnwwkk@chd.edu.cn

  • 中图分类号: TU433

Settlement and deformation characteristics of high fill of Luojiahe expansive soil in Ankang Airport

  • 摘要: 安康机场罗家河高填方是国内罕见的膨胀土填方体。通过表面与底部涵洞沉降监测,对其沉降变形特征进行了研究。结果表明,膨胀土高填方次固结阶段的表面沉降受降水影响显著,出现反复膨胀变形,最大膨胀速率为0.485 mm/d;建立了考虑填方厚度与沉降时间的膨胀土高填方工后沉降预测模型,模型参数u可表征挖填交界面处地基沉降在此处产生的拖拽效应引起的沉降量,模型计算值与实测值平均相对误差为12.17%,该模型可为地质条件与填筑材料类似工程的工后沉降预测所借鉴;依据填方体胀缩变形可将其分为8个阶段,胀缩变形阶段均与时段降水量关系密切,其中缓升段Ⅶ时段降水量为644 mm,对应的膨胀量达44 mm;该膨胀土填方体总体表现为膨胀,而非其他岩土填筑体的压缩变形。
    Abstract: The Luojiahe high fill of Ankang Airport is a rare expansive soil fill in China. In this study, the settlement characteristics of fill are studied by monitoring the settlements of surface and bottom culverts. The results show that the surface settlements of expansive soil at the secondary consolidation stage of high fill are significantly affected by precipitation, and the repeated expansive deformation occurs with the maximum expansion rate of 0.485 mm/d. The prediction model for the post-construction settlement of high fill of expansive soil is established incorporating the fill thickness and settlement duration. The model parameter u can represent the settlement caused by the drag effects caused by the foundation settlement at the interface of the cut and the fill. The average relative error of the value is 12.17%. This model can be used as a reference for predicting the post-construction settlement of projects with similar geological conditions and filling materials. The expansive and compressive deformations of the fill can be divided into 8 stages. The monitored deformation stages are closely related to the precipitation in the period. The rainfall at the slowly rising stage Ⅶ is 644 mm, and the corresponding expansive deformation is 44 mm. The expansive soil fill generally shows expansion rather than compression of other geotechnical fills.
  • 图  1   罗家河高填方地质剖面图

    Figure  1.   Geological profile of Luojiahe high fill

    图  2   填方体及其涵洞

    Figure  2.   High fill and its culverts

    图  3   填方体实测含水率(2019-11)

    Figure  3.   Measured moisture contents of fill (2019-11)

    图  4   罗家河高填方沉降点平面布置图

    Figure  4.   Layout of settlement points for Luojiahe high fill

    图  5   罗家河高填方表面沉降变化时程

    Figure  5.   Process of surface settlement of high fill in Luojiahe

    图  6   罗家河高填方表面沉降速率变化时程

    Figure  6.   Rates of surface settlement of high fill in Luojiahe

    图  7   沉降量与填方厚度的关系

    Figure  7.   Relationship between settlement and fill thickness

    图  8   参数a与监测时间T的关系

    Figure  8.   Relationship between a and T

    图  9   参数T/b与监测时间T的关系

    Figure  9.   Relationship between T/b and T

    图  10   沉降量实测值与计算值对比图(T=457 d)

    Figure  10.   Comparison between measured and calculated settlements (T=457 d)

    图  11   汉滨区降水量(2018-09-01—2019-12-31)

    Figure  11.   Precipitation in Hanbin District(2018-09-01—2019-12-31)

    图  12   膨胀土填方体竖向变形计算曲线

    Figure  12.   Calculated curves of vertical deformation of expansive soil fill

    表  1   填方体压实膨胀土的基本物理性质

    Table  1   Basic physical properties of compacted expansive soil

    含水率w/% 粉粒(0.05~0.005 mm)/% 黏粒(< 0.005 mm)/% 自由膨胀率δef/% 干密度ρd/(g·cm-3) 液限wL/% 塑性指数IP 膨胀压力/kPa 膨胀势判别
    14.4~23.1 45.6~52.4 34.9~44.9 17~46 1.53~1.89 41.6~61.9 16.2~33.4 13~134
    下载: 导出CSV

    表  2   沉降量与填方厚度拟合参数表

    Table  2   Parameters of fitting relationship between settlement and fill thickness

    T/d 19 29 36 73 90 114 124 132 140 144 155 164
    参数a 0.234 0.392 0.572 0.846 0.859 0.913 1.049 1.05 1.08 1.12 1.23 1.23
    参数b 8.06 8.59 11.07 10.36 11.87 15.26 16.70 19.613 20.90 21.681 23.22 24.60
    参数T/b 2.36 3.38 3.25 7.05 7.58 7.47 7.43 6.73 6.69 6.64 6.67 6.67
    T/d 174 183 191 204 217 225 251 263 278 296 303 313
    参数a 1.286 1.322 1.333 1.41 1.36 1.41 1.52 1.56 1.46 1.53 1.57 1.61
    参数b 29.30 30.44 29.89 30.49 32.27 32.66 33.34 32.95 35.02 36.90 36.93 36.99
    参数T/b 5.94 6.01 6.39 6.67 6.72 6.89 7.53 7.98 7.94 8.02 8.20 8.46
    T/d 325 337 344 354 380 384 406 416 425 436 448 457
    参数a 1.625 1.526 1.681 1.744 1.797 1.84 1.916 1.926 1.964 1.988 2.019 2.039
    参数b 39.03 41.32 38.95 37.84 40.65 39.19 40.27 40.00 38.07 40.00 39.44 39.59
    参数T/b 8.326 8.156 8.831 9.355 9.348 9.799 10.08 10.40 11.17 10.89 11.36 11.54
    下载: 导出CSV

    表  3   B22点处膨胀土填方体竖向变形阶段特征

    Table  3   Characteristics of vertical deformation stage of expansive soil fill at B22 point

    变形阶段 陡降段Ⅰ 平缓段Ⅱ 陡升段Ⅲ 平缓段Ⅳ 陡降段Ⅴ 缓降段Ⅵ 缓升段Ⅶ 缓降段Ⅷ
    监测时段 0~36 d 36~55 d 55~75 d 75~110 d 110~130 d 130~266 d 266~390 d 390~457 d
    2018年 2019年
    09-10—10-16 10-16—11-04 11-04—11-25 11-25—12-30 12-30—01-19 11-09—06-03 06-03—10-04 10-04—12-11
    降水量/mm 125 2.7 43.8 10.4 0 126.9 644 178.4
    降水均值/mm/d 3.47 0.14 2.19 0.30 0 0.933 5.19 2.62
    竖向变形/mm 24.5 可忽略 -11.5 可忽略 6 8.5 -44 3
    变形速率/mm/d 0.68 可忽略 -0.575 可忽略 0.3 0.0625 -0.35 0.044
    下载: 导出CSV
  • [1] 郭剑峰, 陈正汉, 郭楠. 延安新区高填方工程的变形与水分迁移耦合分析[J]. 岩土工程学报, 2021, 43(增刊1): 143-148. doi: 10.11779/CJGE2021S1026

    GUO Jianfeng, CHEN Zhenghan, GUO Nan. Application of incremental nonlinear consolidation theory for unsaturated soil in high fill projects[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 143-148. (in Chinese) doi: 10.11779/CJGE2021S1026

    [2] 葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm

    GE Miaomiao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745-753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm

    [3] 朱才辉, 李宁. 基于修正FDA方法的黄土高填方地基工后沉降分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3408-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1099.htm

    ZHU Caihui, LI Ning. Post-construction settlement analysis of loess-high filled foundation based on modified fda approach[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3408-3417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1099.htm

    [4]

    JIE Y X, WEI Y J, WANG D L, et al. Numerical study on settlement of high-fill airports in collapsible loess geomaterials: a case study of Lüliang Airport in Shanxi Province, China[J]. Journal of Central South University, 2021, 28(3): 939-953. doi: 10.1007/s11771-021-4655-4

    [5] 刘宏, 李攀峰, 张倬元. 九寨黄龙机场高填方地基工后沉降预测[J]. 岩土工程学报, 2005, 27(1): 90-93. http://cge.nhri.cn/cn/article/id/11562

    LIU Hong, LI Panfeng, ZHANG Zhuoyuan. Prediction of the post-construction settlement of the high embankment of Jiuzhai-Huanglong Airport[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 90-93. (in Chinese) http://cge.nhri.cn/cn/article/id/11562

    [6] 杨校辉. 山区机场高填方地基变形和稳定性分析[D]. 兰州: 兰州理工大学, 2017.

    YANG Xiaohui. Analysis of Foundation Deformation and Stability of High Fill of Airport in Mountainous Area[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese)

    [7] 龚志红, 李天斌, 龚习炜, 等. 攀枝花机场北东角滑坡整治措施研究[J]. 工程地质学报, 2007, 15(2): 237-243. doi: 10.3969/j.issn.1004-9665.2007.02.017

    GONG Zhihong, LI Tianbin, GONG Xiwei, et al. Remediation measures on the landslide in fill slopes in north-east part of Panzhihua Airport[J]. Journal of Engineering Geology, 2007, 15(2): 237-243. (in Chinese) doi: 10.3969/j.issn.1004-9665.2007.02.017

    [8] 张宇, 陈善雄, 余飞, 等. 南水北调高填方渠道沉降过程计算方法研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4367-4374. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2123.htm

    ZHANG Yu, CHEN Shanxiong, YU Fei, et al. Calculation method study of settlement process of high filling channels in south-to-north water diversion project[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4367-4374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2123.htm

    [9] 李秀珍, 许强, 孔纪名, 等. 九寨黄龙机场高填方地基沉降的数值模拟分析[J]. 岩石力学与工程学报, 2005, 24(12): 2188-2193. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512039.htm

    LI Xiuzhen, XU Qiang, KONG Jiming, et al. Numerical modeling analysis of settlements of high fill foundation for Jiuzai—Huanglong Airport[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2188-2193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512039.htm

    [10] 吕庆, 尚岳全, 陈允法, 等. 高填方路堤黏弹性参数反演与工后沉降预测分析[J]. 岩石力学与工程学报, 2005, 24(7): 1231-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200507025.htm

    LÜ Qing, SHANG Yuequan, CHEN Yunfa, et al. Back-analysis of visco-elastic parameters of filling materials and settlement prediction for high-filled embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1231-1235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200507025.htm

    [11] 郑建国, 王婷, 张继文. 黄土路基沉降量预测方法的研究[J]. 岩土力学, 2010, 31(1): 321-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001056.htm

    ZHENG Jianguo, WANG Ting, ZHANG Jiwen. Study of settlement prediction methods of loess subgrade[J]. Rock and Soil Mechanics, 2010, 31(1): 321-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001056.htm

    [12] 薛祥, 宋连亮, 贾亮, 等. 高速公路软土路基工后沉降预测的新方法[J]. 岩土工程学报, 2011, 33(增刊1): 132-137. http://cge.nhri.cn/cn/article/id/14239

    XUE Xiang, SONG Lianliang, JIA Liang, et al. New prediction method for post-construction settlement of soft-soil roadbed of expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 132-137. (in Chinese) http://cge.nhri.cn/cn/article/id/14239

    [13] 王丽琴, 靳宝成, 杨有海. 黄土路堤工后沉降预测新模型与方法[J]. 岩石力学与工程学报, 2007, 26(11): 2370-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200711028.htm

    WANG Liqin, JIN Baocheng, YANG Youhai. New model and method for forecasting post-construction settlement of loess-fill embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2370-2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200711028.htm

    [14] 朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293-301. http://cge.nhri.cn/cn/article/id/14970

    ZHU Caihui, LI Ning, LIU Mingzhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293-301. (in Chinese) http://cge.nhri.cn/cn/article/id/14970

    [15] 匡希龙, 邹德强. 基于龚帕斯曲线法的高填方路基工后沉降预测新思路[J]. 公路工程, 2008, 33(1): 127-129, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200801034.htm

    KUANG Xilong, ZOU Deqiang. A new thought on prediction method for settlement after construction to high embackment based on compertz curve method[J]. Highway Engineering, 2008, 33(1): 127-129, 134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200801034.htm

    [16] 魏长刚, 王家祥, 王瑞海. 陕西安康机场迁建项目岩土工程勘察报告书(详细勘察+补充勘察)[R]. 西安: 机械工业勘察设计研究院, 2014.

    WEI Changgang, WANG Jiaxiang, WANG Ruihai. Geotechnical Investigation Report of Shaanxi Ankang Airport Relocation Project (Detailed Investigation + Supplementary Investigation) [R]. Xi'an: China Jikan Research Institute of Engineering Investigations and Design, Co., Ltd., 2014. (in Chinese)

    [17] 王文良. 膨胀土高填方变形控制及边坡稳定性研究[D]. 西安: 长安大学, 2018.

    WANG Wenliang. Study on Deformation Control and Slope Stability of High Filled Foundtion with Expansive Soil[D]. Xi'an: Changan University, 2018. (in Chinese)

    [18] 朱才辉, 李宁. 基于黄土变形时效试验的高填方工后沉降研究[J]. 岩土力学, 2015, 36(10): 3023-3031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510045.htm

    ZHU Caihui, LI Ning. Post-construction settlement analysis of loess-high filling based on time-dependent deformation experiments[J]. Rock and Soil Mechanics, 2015, 36(10): 3023-3031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510045.htm

    [19] 杜伟飞, 郑建国, 刘争宏, 等. 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325-331. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm

    DU Weifei, ZHENG Jianguo, LIU Zhenghong, et al. Settlement behavior of high loess-filled foundation and impact from exhaust conditions[J]. Rock and Soil Mechanics, 2019, 40(1): 325-331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm

  • 期刊类型引用(8)

    1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
    2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
    3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
    4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
    5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
    6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
    7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
    8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术

    其他类型引用(6)

  • 其他相关附件

图(12)  /  表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-01-15
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回