Methods and practices for deformation prediction in high-stress soft rock tunnels considering creep characteristics
-
摘要: 为研究高应力软岩蠕变特性对隧道围岩变形预测的影响,以木寨岭公路隧道为依托,首先采用三维计算模型与多元线性回归相结合的方法分析初始地应力场,并结合围岩段落划分,选择典型计算断面;其次,提出基于[BQ]值的围岩参数取值方法,确定典型计算断面的围岩参数;而后,开展基于M-C模型和Cvsic模型的断面变形计算,剖析岩体蠕变特性对围岩变形的影响;最终,对比了预测结果与实际围岩变形。结果表明:①岩体蠕变特性对围岩变形具有明显增大效应,围岩位移增长量与横断面平均主应力呈正相关;②围岩条件越差,蠕变增大效应越显著;横断面平均主应力越大,蠕变增大效应中位移增长量越大,而位移增长率变化不明显;③蠕变特性对围岩变形等级预测有明显影响,M-C模型预测结果弱于Cvisc模型,与实际围岩变形情况存在较大差异。研究结果为在高应力软岩隧道变形预测中引入岩体蠕变效应奠定了实践基础。Abstract: To study the influences of high-stress soft rock creep characteristics on deformation prediction of surrounding rock of tunnels, the Muzhailing highway tunnel is taken as the support project. Firstly, the initial ground stress field is analyzed using a three-dimensional simulation model combined with multiple linear regression. The typical calculation sections are selected in conjunction with the section division of the surrounding rock. Secondly, the relevant method based on the [BQ] value is proposed to determine the parameters of the surrounding rock in the typical calculation section. Then, the section deformation is calculated based on the M-C model and the Cvsic model to analyze the influences of the creep characteristics of rock on the deformation of the surrounding rock. Finally, the predicted results are compared with the actual ones. The results show that: (1) The creep characteristics of rock mass have significant increase effects on the deformation, and the displacement growth rate is positively correlated with the average principal stress of cross-section. (2) The worse the surrounding rock condition, the more pronounced the creeping increase effects. The greater the average principal stress of the cross-section, the larger the displacement growth rate in the creep increase effects, while the change in the displacement growth rate is less noticeable. (3) The creep characteristics have significant effects on the prediction of the deformation level of the surrounding rock. The predicted results by the M-C model are weaker than those by the Cvisc model, which are pretty different from the actual deformations of the surrounding rock. The results lay a practical foundation for introducing the creep effects into the deformation prediction of high-stress soft rock tunnels.
-
-
表 1 各岩层的单轴饱和抗压强度
Table 1 Uniaxial saturated compressive strengths of rock strata
统计项目 单轴饱和极限抗压强度 统计指标岩土名称 统计个数n 范围值 算术平均值fm 标准差σf 变异系数δ 修正系数 标准值 炭质板岩
(P1)30 11.23~45.66 28.56 7.99 0.28 0.91 26.0 炭质板岩
(C1)6 16.37~41.24 25.48 8.53 0.33 0.75 19.2 断层压碎岩 8 12.12~15.94 14.00 1.40 0.10 0.93 13.00 注:已剔除异常值。 表 2 主要岩层物理力学参数
Table 2 Main physical and mechanical parameters of rock strata
岩体类型 变形模量E/GPa 泊松比 重度/(kN·m-3) 中风化炭质板岩(P1) 2.0 0.35 27.0 断层压碎岩 1.5 0.40 27.0 中风化灰岩(C1) 6.0 0.30 27.0 中风化炭质板岩(C1) 3.0 0.35 27.0 表 3 N2钻孔主应力反演与实测对比
Table 3 Comparison between inversion and measurement of N2 principal stress
钻孔编号 测点 SH/MPa Sh/MPa Sv/MPa 实测值 回归值 绝对误差 相对误差 实测值 回归值 绝对误差 相对误差 实测值 回归值 绝对误差 相对误差 N2 1 25.7 25.1 0.6 2.3% 16.8 20.5 3.7 22.2% 10.7 12.8 2.1 19.2% 2 24.1 25.4 1.3 5.7% 17.0 20.9 3.9 23.0% 11.1 13.3 2.2 19.1% 表 4 围岩弹塑性参数
Table 4 Elastic-plastic parameters of surrounding rock
岩体类型 界限 变形模量E/GPa 泊松比ν 黏聚力c/MPa 内摩擦角φ/(°) 重度γ/(kN·m-3) 备注 炭质板岩 上限 2.00 0.35 0.80 28 27.0 [BQ]=214 下限 1.20 0.38 0.50 25 27.0 [BQ]=54 断层压碎岩 — 1.20 0.39 0.45 24 27.0 表 5 木寨岭隧道围岩蠕变参数
Table 5 Creep parameters of surrounding rock in Muzhailing tunnel
围岩岩性 Maxwell剪切模量GM/GPa Maxwell黏度ηM/(GPa·h-1) Kelvin剪切模量GK/GPa Kelvin黏度ηK/(GPa·h-1) 炭质板岩 1.00 8300 2.00 138 断层压碎岩 0.75 6225 1.50 103.50 注:灰岩蠕变参数按炭质板岩参数选取。 表 6 木寨岭公路隧道变形预测相关计算资料(左线)
Table 6 Data of deformation prediction of Muzhailing highway tunnel (left line)
段落起讫里程
(ZK)主要岩性 [BQ]均值 计算断面1 计算断面2 段落起讫里程
(ZK)主要岩性 [BQ]均值 计算断面1 计算断面2 212+000—+185 ① 190.5 211+900 212+100 216+005—217+100 ① 171 216+100 217+100 212+185—+385 ① 54 212+200 212+300 217+100—+300 ① 54.3 217+100 217+300 212+385—+585 ② — 212+400 212+500 217+300—+520 ② — 217+300 217+500 212+585—+785 ① 54 212+600 212+700 217+520—+720 ① 54.3 217+600 217+700 212+785—213+355 ① 189 212+800 213+200 217+720—219+030 ① 214 217+700 219+000 213+355—+555 ① 92.8 213+400 213+500 219+030—+230 ① 84.3 219+100 219+200 213+555—+715 ② — 213+600 213+700 219+230—219+610 ② — 219+300 219+600 213+715—+915 ① 92.8 213+800 213+900 219+610—810 ① 84.3 219+700 219+800 213+915—214+285 ① 190 214+000 214+200 219+810—221+340 ① 203 219+900 221+100 214+285—+385 ① 114 214+300 — 221+340—+540 ① 92.5 221+400 221+500 214+385—+505 ② — 214+400 214+500 221+540—221+690 ② — 221+600 — 214+505—+705 ① 93 214+600 214+700 221+690—+890 ① 92.5 221+700 221+800 214+705—+830 ① 133 214+800 — 221+890—222+810 ① 196.8 221+900 222+800 214+830—215+030 ① 54.3 214+900 215+000 222+810—223+010 ① 92.5 222+900 223+000 215+030—+150 ② — 215+100 — 223+010—+105 ② — 223+100 — 215+150—+635 ① 54.3 215+400 215+600 223+105—+305 ① 92.5 223+200 223+300 215+635—+805 ② — 215+700 215+800 223+305—224+000 ① 190.6 223+400 224+000 215+805—216+005 ① 54.3 215+900 216+000 注:岩性①为炭质板岩,岩性②为断层压碎岩;里程K212前、及K224后,因垂直应力小,地应力场模拟出现明显偏差,予以剔除。 -
[1] TIAN Siming, WANG Wei, GONG Jiangfeng. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.
[2] LI Zhijun, GUO Xinxin, MA Zhenwang, et al. Research status and high-strength pre-stressed primary (type) support system for tunnels with large deformation under squeezing conditions[J]. Tunnel Construction, 2020, 40(6): 755-782.
[3] SINGH B, JETHWA J L, DUBE A K, et al. Correlation between observed support pressure and rock mass quality[J]. Tunnelling and Underground Space Technology, 1992, 7(1): 59-74. doi: 10.1016/0886-7798(92)90114-W
[4] GOEL R K, JETHWA J L, PAITHANKAR A G. Tunnelling through the young Himalayas—a case history of the Maneri-Uttarkashi power tunnel[J]. Engineering Geology, 1995, 39(1/2): 31-44.
[5] HOEK E, MARINOS P. Predicting squeeze (Part 2) [J]. Tunnels and Tunnelling International, 2000, 32(12): 33-36.
[6] 陈卫忠, 田云, 王学海, 等. 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134. CHEN Wei-zhong, TIAN Yun, WANG Xue-hai, et al. Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134. (in Chinese)
[7] 骆顺天, 杨凡杰, 周辉, 等. 基于统计分析的地下厂房边墙最大收敛变形多指标预测方法[J]. 岩土力学, 2020, 41(10): 3415-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010028.htm LUO Shuntian, YANG Fanjie, ZHOU Hui, et al. Multi-index prediction method for maximum convergence deformation of underground powerhouse side wall based on statistical analysis[J]. Rock and Soil Mechanics, 2020, 41(10): 3415-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010028.htm
[8] 赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报, 2021, 40(7): 1297-1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107001.htm ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1297-1336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107001.htm
[9] 王道远, 刘佳, 张逴, 等. 高地应力深埋隧道断裂破碎带大变形控制方法现场试验研究[J]. 岩土工程学报, 2020, 42(4): 658-666. doi: 10.11779/CJGE202004008 WANG Daoyuan, LIU Jia, ZHANG Chuo, et al. Field tests on large deformation control method for surrounding rock of deep tunnel in fault zone with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 658-666. (in Chinese) doi: 10.11779/CJGE202004008
[10] 徐国文, 何川, 汪耀, 等. 流变荷载作用下隧道裂损二次衬砌结构安全性能研究[J]. 土木工程学报, 2016, 49(12): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201612013.htm XU Guowen, HE Chuan, WANG Yao, et al. Study on the safety performance of cracked secondary lining under action of rheological load[J]. China Civil Engineering Journal, 2016, 49(12): 114-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201612013.htm
[11] 白国权. 隧道二衬严重开裂段病害综合治理研究[J]. 铁道标准设计, 2014, 58(8): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408035.htm BAI Guoquan. Research on comprehensive treatment for severe cracking of tunnel secondary lining[J]. Railway Standard Design, 2014, 58(8): 133-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408035.htm
[12] 孟陆波, 潘皇宋, 李天斌, 等. 鹧鸪山隧道二次衬砌开裂机理及支护时机探讨[J]. 现代隧道技术, 2017, 54(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702020.htm MENG Lubo, PAN Huangsong, LI Tianbin, et al. Secondary lining cracking mechanism and the best time for supporting the zhegushan tunnel[J]. Modern Tunnelling Technology, 2017, 54(2): 129-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702020.htm
[13] 汪波, 李天斌, 何川, 等. 强震区软岩隧道大变形破坏特征及其成因机制分析[J]. 岩石力学与工程学报, 2012, 31(5): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm WANG Bo, LI Tianbin, HE Chuan, et al. Analysis of failure properties and formatting mechanism of soft rock tunnel in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 928-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm
[14] 汪波, 何川, 吴德兴, 等. 苍岭特长公路隧道地应力场反演分析[J]. 岩土力学, 2012, 33(2): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202051.htm WANG Bo, HE Chuan, WU Dexing, et al. Inverse analysis of in situ stress field of Cangling super-long highway tunnel[J]. Rock and Soil Mechanics, 2012, 33(2): 628-634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202051.htm
[15] 代聪, 何川, 陈子全, 等. 超大埋深特长公路隧道初始地应力场反演分析[J]. 中国公路学报, 2017, 30(10): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710013.htm DAI Cong, HE Chuan, CHEN Ziquan, et al. Inverse analysis of initial ground stress field of deep embedded and extra long highway tunnel[J]. China Journal of Highway and Transport, 2017, 30(10): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710013.htm
[16] 李建伟, 雷胜友, 李振, 等. 木寨岭隧道炭质板岩流变力学特性研究[J]. 隧道建设, 2012, 32(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201201011.htm LI Jianwei, LEI Shengyou, LI Zhen, et al. Investigation on rheologic properties of carbonaceous slate in muzhailing tunnel[J]. Tunnel Construction, 2012, 32(1): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201201011.htm
[17] 宋勇军, 雷胜友, 邹翀, 等. 干燥与饱水状态下炭质板岩蠕变特性研究[J]. 地下空间与工程学报, 2015, 11(3): 619-625, 664. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503015.htm SONG Yongjun, LEI Shengyou, ZOU Chong, et al. Study on creep characteristics of carbonaceous slates under dry and saturated states[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 619-625, 664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503015.htm
[18] 陶志刚, 罗森林, 康宏伟, 等. 公路隧道炭质板岩变形规律及蠕变特性研究[J]. 中国矿业大学学报, 2020, 49(5): 898-906. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005010.htm TAO Zhigang, LUO Senlin, KANG Hongwei, et al. Analysis of deformation law and creep characteristics of carbonaceous slate in highway tunnel[J]. Journal of China University of Mining & Technology, 2020, 49(5): 898-906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005010.htm
[19] 徐慧臣. 木寨岭深埋隧道板岩吸水强度软化结构效应实验研究[D]. 北京: 中国矿业大学(北京), 2019. XU Huichen. Experimental Study on Strength Softening of Slate after Water Absorption Due to Structure Effects for Muzhailing Deep-Buried Tunnel[D]. Beijing: China University of Mining & Technology, Beijing, 2019. (in Chinese)
[20] WANG M N, WANG Z L, TONG J J, et al. Support pressure assessment for deep buried railway tunnels using BQ-index[J]. Journal of Central South University, 2021, 28(1): 247-263.
-
期刊类型引用(25)
1. 张志哺. 干湿-冻融循环下公路切坡玄武岩力学特性及损伤机制研究. 公路. 2025(03): 41-49 . 百度学术
2. 黄彦华,李明旭,武世岩,杨超. 基于连续-离散耦合方法的边坡稳定性模拟研究. 中南大学学报(自然科学版). 2025(04): 1502-1513 . 百度学术
3. 张科,李娜. 干湿循环作用下岩桥破裂演化及前兆异常定量识别研究. 工程地质学报. 2024(01): 64-73 . 百度学术
4. 刘帅,杨更社,潘振兴. 冻融环境下“三段式”岩质边坡锁固段损伤破坏及灾变机制研究. 岩石力学与工程学报. 2024(11): 2781-2795 . 百度学术
5. 黎俊华. 基于极限平衡法的边坡稳定性分析. 采矿技术. 2023(01): 39-44 . 百度学术
6. 王建明,崔新男,陈忠辉,陈冲. 露天矿含后缘裂隙岩质边坡岩体卸荷断裂机理与稳定性研究. 岩土工程学报. 2023(02): 345-353 . 本站查看
7. 郭朋瑜,闫兴田,吉锋,易林立. 四川茂县新磨村滑坡启动机制物理模拟试验研究. 工程地质学报. 2023(01): 154-164 . 百度学术
8. 林之岳,黎俊华,王道林. 基于爆破振速演变规律的采场安全分析. 黄金. 2023(03): 5-11 . 百度学术
9. 冷先伦,王川,盛谦,宋文军,陈健,张占荣,陈菲. 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究. 岩土力学. 2023(05): 1283-1294+1308 . 百度学术
10. 冉孟坤,韦港荣,熊春发,卢超波,秦梓航. 广西某高速公路基于切线角理论的隧道变形监测预警应用研究. 四川地质学报. 2023(02): 302-306+312 . 百度学术
11. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 . 百度学术
12. 朱星,唐垚. 锁固段边坡模型破坏前兆特征. 地球科学. 2022(06): 1957-1968 . 百度学术
13. 杨泓全,范杰,黄成年,刘先林,朱星. 中部锁固岩桥脆性断裂特征试验研究. 科学技术与工程. 2022(15): 6255-6263 . 百度学术
14. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
15. 王闯,董金玉,刘汉东,黄志全,赵亚文,杨兴隆. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究. 地球科学. 2022(12): 4428-4441 . 百度学术
16. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
17. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 . 百度学术
18. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 . 百度学术
19. 范杰,朱星,霍冬冬,胡桔维,刘俊峰. 基于数字图像相关和声发射的岩质锁固段破坏试验研究. 科学技术与工程. 2021(36): 15581-15590 . 百度学术
20. 李巧刚,张树东,吴斌. 矿区大型滑坡体力学机理及地质演化模式研究. 煤炭科学技术. 2020(03): 214-220 . 百度学术
21. 乔趁,李长洪,王宇,颜丙乾. 冻融循环作用下中部锁固岩桥破坏试验研究. 岩石力学与工程学报. 2020(06): 1094-1103 . 百度学术
22. 王建明,陈忠辉,周子涵,陈帅,孙小欢. 不同卸荷速率下节理岩桥变形破坏及裂隙扩展演化试验研究. 矿业科学学报. 2020(04): 382-392 . 百度学术
23. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 . 百度学术
24. 李冬冬,刘汉东. 风脉寺滑坡前缘阻滑体不同产状稳定性研究. 华北水利水电大学学报(自然科学版). 2018(06): 8-12 . 百度学术
25. 姜彤,雷家华. 基于图像相关分析的锁固型滑坡模型试验方法. 华北水利水电大学学报(自然科学版). 2018(06): 41-45 . 百度学术
其他类型引用(32)
-
其他相关附件