Analysis of coupled shallow and deep sliding of slopes induced by earthquake based on limit equilibrium method
-
摘要: 边坡地震位移是评价边坡地震稳定性的重要指标,现有的地震位移分析方法主要针对单一滑动面边坡。基于Spencer极限平衡分析原理,提出了一种滑面为非平面的双滑面土质边坡地震位移计算方法。该方法基于考虑惯性力的极限平衡条分法建立双滑面滑块体系在地震过程中的动力平衡方程,考虑地震引起两个滑动面滑移变形过程中浅层和深层滑体之间的相互影响。将研究方法的结果与有限差分软件FLAC的数值模拟结果进行对比,证明了方法描述地震引起边坡浅层和深层耦联滑移变形模式的合理性和正确性;并将建立的方法分别用于分层土堆积层边坡以及川藏俄岗公路老折山边坡,阐明了该方法用于实际双滑面边坡地震位移计算的可行性。
-
关键词:
- 地震边坡稳定性 /
- Newmark滑块分析 /
- 双滑动面 /
- 极限平衡条分法 /
- 动力平衡方程
Abstract: The displacement of seismic slopes is an important index to evaluate their stability. The existing seismic displacement analysis methods are mainly aimed at the slope with single sliding surface. Based on the Spencer limit equilibrium analysis principle, a method for calculating the seismic displacement of slopes with double non-planar slip surfaces is proposed. By using the limit equilibrium slice method considering the seismically inertial force, the dynamic equilibrium equations for the double-sliding block system during earthquake shaking is established, and the interaction between shallow and deep sliding bodies in the sliding process caused by earthquake is considered. The results by the proposed method are compared with the numerical results of finite difference software FLAC, which proves the rationality and correctness of the method in describing the coupled shallow and deep seismic sliding pattern of slopes. The proposed method is then applied to the layered soil accumulation slope and the Laozheshan slope of section Egang of Sichuan-Tibet Highway, respectively. The feasibility of the proposed method for calculating the seismic displacement of actual slopes with double potential slip surfaces is clarified. -
0. 引言
粗粒土是一种常见的筑坝材料。粗粒土剪切过程中的颗粒破碎现象明显[1],这是引起堆石坝发生变形的重要原因之一。随着中国超高坝的建设,越来越多的学者开始关注高应力作用下粗粒土颗粒的破碎特性[2-5]。但是,由于试验条件的限制,宏观试验只能根据破碎前后的级配曲线演化来推断颗粒破碎程度。与宏观试验相比,近年来日益成熟的离散元法(discrete element method,简称DEM)数值模拟为从细观层面对粗粒土颗粒破碎进行研究提供了新途径[6-10]。
在DEM数值模拟中,颗粒强度和弹性力学参数是模拟颗粒破碎以及颗粒—颗粒、颗粒—边界相互作用的重要材料特性,是影响数值模拟结果的关键因素之一。目前主流的细观参数标定方法,通常是先假定一组细观参数,通过对参数及其组合的调整使数值试样的宏观力学表现不断逼近土体的真实行为,直到数值试验与室内试验得到的宏观力学性质曲线基本接近时,认为该组细观参数已具备一定合理性,可以用于后续的数值计算中。这种依托于使用者经验的“试错法”需进行多次尝试并有一定的盲目性。考虑到DEM数值模拟建立在细观颗粒间相互作用的基础上,通过物理力学试验获得颗粒强度和弹性力学参数的真实分布规律,可以为DEM数值模拟的细观参数标定提供规律性方面的参考和支撑。
粗粒土的DEM数值模拟中需要考虑的细观参数主要是颗粒强度和弹性模量,关于它们的研究主要集中在两个方面。一是颗粒参数的离散性。以颗粒强度为例,比如McDowell等[11-12]提出用Weibull分布来描述颗粒强度的分布特点,但是迟世春等[13]对石灰岩颗粒进行相同试验之后却发现用该分布拟合颗粒强度离散性的效果不佳;另外还有张明等[14]提出用对数正态分布来描述颗粒强度的随机性在实际应用上更为合理,米晓飞等[15]用Logistic函数对颗粒强度的随机分布特点进行了描述。上述关于颗粒参数离散性分布特征的研究都是在确定某一特定分布函数后对试验结果进行拟合,对于结果缺少在不同分布类型之间的对比选优。二是颗粒参数的尺寸效应。目前对于颗粒强度的尺寸效应研究很多,结果表明粗粒土颗粒强度与颗粒尺寸之间存在着较强的相关性,这种相关性通常用幂函数关系来表示[12-13,16];而对于颗粒弹性模量的尺寸效应研究不多。总体来说,国内外学者对于粗粒土颗粒强度的研究已取得较为丰富的成果;虽然关于粒状材料的弹性力学参数的研究案例并不少[17-21],但是对于粗粒土颗粒的弹性力学参数进行研究的先例却不多;目前,对于粗粒土颗粒的研究主要集中在粒径60 mm以下的小尺寸范围,得到的尺寸效应模型能否适用于更大的粒径范围也值得探究。
本文基于20~120 mm的粗粒土颗粒单轴压缩试验结果,确定颗粒强度和弹性模量,用统计学中的K-S检验法从Weibull分布、Lognormal分布和Logistic分布中分别比选出它们的最优分布类型,给出它们各自的尺寸效应经验模型。然后采用240 mm粗粒土颗粒的试验结果对提出的尺寸效应经验模型进行验证。最后对颗粒刚度的特点进行了初步讨论。
1. 试验材料和方法
本试验采用爆破开采得到的大连石灰岩颗粒,按照粒径大小依次记为①~⑧组,粒径分别为20~24 mm、24~28 mm、28~32 mm、32~36 mm、36~40 mm以及60 mm、120 mm和240 mm。其中,①~⑤组颗粒由常规筛分得到,⑥~⑧组颗粒用特制的圆孔筛(直径分别为60±5,120±5,240±5 mm)挑选得到。为了减少颗粒形状对参数的影响,选取的颗粒几何形状相似,并剔除针状、扁平状等特殊颗粒。
由于石灰岩颗粒不是完全规则的球形,其尺寸仅用筛孔大小难以准确描述。试验时是将颗粒稳定放置在下刚性板上,并且进行多次试放,找到竖直高度最短的稳定放置状态,定义此时的高度为短轴H,并以此稳定状态进行轴向加载;在与H垂直的横截面中,取最大径为长轴L,与L垂直方向上的最大径为中轴W。此处的L、W和H互相垂直,并且满足
L≥W≥H 。颗粒尺寸用算术平均径da 来衡量,各组颗粒的特征粒径用该组颗粒的算术平均径的均值表示,颗粒形状用球度Sp来描述:da=(L+W+H)/3, (1) Sp=(L⋅W⋅H)1/3/L×100%。 (2) 本文选择的石灰岩颗粒样本的各项基本物理参数详见表1。由于本文试验中各组颗粒样本的球度接近,可以认为形状对各组的影响是相同的。
表 1 石灰岩颗粒的基本物理参数Table 1. Basic physical parameters of limestone particles编号 粒组/mm 个数 算数平均径da/mm 球度Sp/% 质量m/g ① 20~24 82 22.13±1.97 74.07±7.53 11.24±2.90 ② 24~28 78 25.83±2.03 76.54±7.49 18.10±3.72 ③ 28~32 76 30.17±2.25 74.34±6.99 26.50±5.99 ④ 32~36 77 33.81±2.43 75.70±7.49 37.26±7.89 ⑤ 36~40 76 37.32±2.88 75.99±7.13 48.57±9.81 ⑥ 60 35 53.89±4.48 77.98±6.68 183.52±31.40 ⑦ 120 38 120.99±8.31 77.30±6.25 2532.56±2928.13 ⑧ 240 20 225.35±16.42 78.80±5.07 13357.50±1884.72 注: 表中格式为“均值±标准差”。由于本文试验所用石灰岩颗粒的粒径范围大,为保证试验顺利进行,①~⑤组颗粒使用图1(a)所示装置进行单轴压缩试验,⑥~⑧组颗粒使用图1(b)所示装置进行单轴压缩试验。上述两种装置的试验原理相同,加载方式可以采用位移控制或力控制,试验过程相当于上、下两个平行的刚性平面挤压颗粒直至破碎。这两种装置只有最大加载能力和刚性平面最大间距存在区别。
试验前将颗粒在烘箱内连续干燥6 h以上。将颗粒置于两刚性板间,通过控制位移施加轴向荷载,加载速率取0.5 mm/min,试验过程中自动记录荷载和位移。当观察到颗粒发生主体破坏后便停止加载,主体破坏是指颗粒产生贯穿型裂缝或分裂为几块。颗粒破碎前后的情况如图2所示,其荷载–位移曲线如图3所示。由于颗粒形状的不规则性会引起颗粒与刚性板之间的接触点附近产生应力集中,造成颗粒的局部压裂或者棱角破碎,反映在荷载–位移曲线上为荷载突然跌落,曲线呈现锯齿状。
2. 颗粒强度和弹性模量的确定
2.1 颗粒强度指标的确定
石灰岩颗粒强度指标由下式计算[22]:
σc=Ffd2, (3) 式中,
σc 为颗粒强度指标,Ff 为颗粒破坏荷载,d为颗粒粒径,此处取每个颗粒的实际受力长度,即两刚性板之间的距离。2.2 颗粒弹性模量的确定
文献[23]介绍了一种建立在固体力学中计算接触应力的赫兹理论的基础之上,用于计算质地相对坚硬且均匀的粒状材料弹性模量的方法。该方法所使用的试验手段和材料变形过程都与本文的试验研究极为相似,两刚性板的挤压是导致颗粒材料发生变形直至最后破坏的驱动力,所以本文采用该方法对石灰岩颗粒的弹性模量进行了计算。
上述方法将受到两刚性板挤压的不规则颗粒(如图4所示)的荷载–位移关系用下式表示:
F=E0.338K(1−ν2)⋅s3/2。 (4) 式中
F 为轴向荷载;s 为轴向荷载F 作用下的变形量;ν 为泊松比,本文根据文献[24]中对各类岩石泊松比的汇总,假设石灰岩的泊松比ν=0.25 ;E 为颗粒弹性模量;K为和颗粒接触点曲率有关的参数,引入该参数是因为颗粒表面粗糙导致接触点附近并非绝对光滑且连续,K=[KU(1RU+1R′U)1/3+KL(1RL+1R′L)1/3]3/2。 (5) 式中
R′U ,RU 分别为颗粒与上刚性板接触点处的最大和最小曲率半径;R′L ,RL 分别为颗粒与下刚性板接触点处的最大和最小曲率半径;KU ,KL 为主曲率半径决定的常数,通过计算cosθ ,可以从表2中对应查取,θ 为颗粒表面与刚性板接触点处接触主平面的夹角(°),根据赫兹接触理论有KU 和KL 分别对应的cosθ 表达式为KU:cosθ=(1/RU−1/R′U)/(1/RU+1/R′U),KL:cosθ=(1/RL−1/R′L)/(1/RL+1/R′L)。} (6) 具体结合本文试验,石灰岩颗粒在自重下处于自稳定状态。可以认为颗粒与下刚性板之间近似面面接触,与上刚性板之间近似点面接触。这种情况下,颗粒与下刚性板接触点处的曲率
R′L=RL=∞ 。此时可以将式(4)具体写成F=E0.338(1−ν2)[KU(1/RU+1/R′U)1/3]3/2⋅s3/2, (7) 式中,
R′U ,RU 由颗粒的L,W和H计算[18]:R′U=(L2/4+H2)/(2H), (8) RU=(W2/4+H2)/(2H), (9) 继续将式(7)简写为
F=CH⋅s3/2, (10) 式中,
CH 可以由颗粒破坏前的荷载–位移曲线拟合得到。因而,颗粒弹性模量E如下所示:E=0.338CH(1−ν2)[KU(1RU+1R′U)1/3]3/2。 (11) 3. 数理统计和分析
3.1 参数的数理统计方法
本文首先采用格布拉斯准则[25]检测样本中的异常值。设
X=(X1,X2,⋯,Xn) 是待检测数据,如果最值Xi 满足下式则为异常值,应予剔除。|Xi−ˉX|S≥G(N,α)。 (12) 式中
ˉX 和S 分别为样本均值和标准差;G 为格拉布斯临界值,根据样本容量N 和显著性水平α 查表[25]得到。在剔除某一异常值后,应继续对余下的样本点进行检测,直到没有异常值为止。然后根据已有研究经验[11-17],本文尝试用Weibull分布、Lognormal分布和Logistic分布对颗粒强度
σc 和弹性模量E分别进行统计。最后对于每个参数,使用K-S检验法[26]定量地判断假设的概率分布类型是否合适,并从中确定最优分布形式。该方法通过将选定的分布类型的理论累积概率与观察到的经验累积概率进行比较,找出它们之间最大的差值,并参照抽样分布,给出这一差异是否处于偶然。如果两者较为接近,则表明实际样本的分布类型与假设的理论分布类型拟合程度很高。所有的统计分析均在显著性水平
α=0.05 的条件下进行,即置信度为95%。3.2 参数的最优分布类型
采用式(3),(11)对各粒组的颗粒强度
σc 和弹性模量E进行整理,绘制参数统计直方图,并采用K-S检验法分别对3种假设分布类型进行了检验。其中,28~32 mm粒组的参数统计直方图和最优概率密度曲线如图5所示,限于篇幅,其他粒组略。各粒组的K-S检验结果详见表3,结果表明:①参数σc 和E对于Weibull分布、Lognormal分布和Logistic分布都可接受;②对参数σc 和E可以直接判定最优分布类型是Lognormal分布。表 3 石灰岩颗粒强度和弹性模量分布类型的K-S检验Table 3. K-S test results of distribution types for strength and elastic modulus of limestone particles编号 粒组/mm 颗粒强度 弹性模量 均值/MPa 分布形式 K-S值 判断 最优分布 均值/MPa 分布形式 K-S值 判断 最优分布 ① 20~24 13.108 Weibull 0.085 满足 Lognormal 1005.193 Weibull 0.097 满足 Lognormal Lognormal 0.055 满足 Lognormal 0.073 满足 Logistic 0.068 满足 Logistic 0.103 满足 ② 24~28 12.389 Weibull 0.092 满足 Lognormal 1113.994 Weibull 0.095 满足 Lognormal Lognormal 0.062 满足 Lognormal 0.089 满足 Logistic 0.096 满足 Logistic 0.092 满足 ③ 28~32 11.977 Weibull 0.078 满足 Lognormal 928.598 Weibull 0.073 满足 Lognormal Lognormal 0.056 满足 Lognormal 0.072 满足 Logistic 0.089 满足 Logistic 0.085 满足 ④ 32~36 11.673 Weibull 0.128 满足 Lognormal 839.674 Weibull 0.100 满足 Lognormal Lognormal 0.112 满足 Lognormal 0.067 满足 Logistic 0.126 满足 Logistic 0.084 满足 ⑤ 36~40 10.438 Weibull 0.084 满足 Lognormal 801.380 Weibull 0.102 满足 Lognormal Lognormal 0.040 满足 Lognormal 0.084 满足 Logistic 0.077 满足 Logistic 0.126 满足 ⑥ 60 6.442 Weibull 0.113 满足 Lognormal 544.306 Weibull 0.135 满足 Lognormal Lognormal 0.079 满足 Lognormal 0.096 满足 Logistic 0.089 满足 Logistic 0.138 满足 ⑦ 120 5.242 Weibull 0.103 满足 Lognormal 422.451 Weibull 0.169 满足 Lognormal Lognormal 0.048 满足 Lognormal 0.107 满足 Logistic 0.076 满足 Logistic 0.143 满足 ⑧ 240 3.394 Weibull 0.117 满足 Lognormal 281.528 Weibull 0.125 满足 Lognormal Lognormal 0.084 满足 Lognormal 0.119 满足 Logistic 0.126 满足 Logistic 0.121 满足 3.3 参数的尺寸效应模型
为进一步研究颗粒强度和弹性模量与粒径的相关性,选择参数均值作为其代表值绘制于图6中。由图6可知这两个参数与颗粒尺寸之间存在着明显的非线性相关性。为了能够简单明了地描述这一关系,采用式(13)的幂函数表达式对这一关系进行了拟合,并且将拟合结果作为参数的尺寸效应经验模型,拟合结果详见表4。
表 4 参数的尺寸效应模型Table 4. Models for size effect of parameters参数名称 代表值含义及符号 尺寸效应模型 r2 预测误差/% 颗粒强度 均值 σ0 σ0=89.71ˉda−0.606 0.92 0.58 弹性模量 均值 E0 E0=7351ˉda−0.615 0.91 6.61 y=λˉdna。 (13) 式中
y 为待研究参数代表值;ˉda 为颗粒算数平均径的均值;λ 和n 为拟合参数。为了验证本文所给的参数尺寸效应经验模型是否准确,对240 mm的颗粒试验结果进行了预测,颗粒强度σc 、弹性模量E的预测值和试验值之间的相对误差分别为0.58%,6.61%,在可接受范围内。这表明,本文所给出的参数尺寸效应经验模型能够适用于更大的颗粒尺寸范围。尺寸效应经验模型的n值小于0说明大连石灰岩的颗粒强度和弹性模量的均值和颗粒尺寸之间呈负相关。该结果和前人统计结果一致[12-13,17],同时弥补了对大尺寸不规则颗粒单轴压缩试验结果进行统计分析的空白。4. 讨论
前文讨论了颗粒强度和弹性模量的随机分布规律和尺寸效应模型,除了上述两个参数外,颗粒刚度也是DEM数值模拟中需要考虑的重要参数之一。对于刚度的认识有两种:①认为刚度是线性的;②认为刚度是非线性的。而目前多把颗粒刚度看作是线性的。为了分析线性刚度和非线性刚度哪个更加符合实际情况,这里对石灰岩颗粒在破坏点之前的荷载—位移曲线进行了线性拟合(
F=ks )和非线性拟合(F=CHs3/2 )结果的对比,如图7所示。通过对每个颗粒线性拟合和非线性拟合结果的r2 进行比较,发现本文试验有81.74%的颗粒用非线性拟合比线性拟合效果更好。这说明,在石灰岩颗粒受单轴压缩过程中,颗粒刚度用非线性来描述更加符合实际。5. 结论
本文通过大量大连石灰岩颗粒单轴压缩试验,获得了颗粒强度和弹性模量的随机分布特征和尺寸效应经验模型,并对颗粒刚度的特点进行了初步讨论。这些统计结果反映了粗粒土颗粒在受力变形过程中的力学规律。建议在进行粗粒土DEM数值模拟时,对这些规律加以考虑。
(1)不仅粗粒土颗粒强度具有离散性,而且颗粒弹性模量同样具有离散性,该情况说明粗粒土颗粒在力学特性上表现出固有的离散性。
(2)大连石灰岩颗粒强度和弹性模量的最优概率分布类型是Lognormal分布。
(3)大连石灰岩颗粒强度和弹性模量的均值均与颗粒尺寸之间呈负相关,用幂函数拟合效果较好。可见,粗粒土颗粒强度和弹性模量都具有明显的尺寸效应。
(4)在石灰岩颗粒单轴压缩过程中,颗粒刚度用非线性来描述更加符合实际。
-
表 1 土层参数信息
Table 1 Parameters of soil layers
算例 土层分类 重度γ/
(kN·m-3)泊松比μ 黏聚力c/
kPa内摩擦角φ/
(°)剪切波速Vs/
(m·s-1)验证
算例一浅层滑带 19 0.3 22 20 300 深层滑带 19 0.3 33 27 300 其余部分 19 0.2 — — 3000 验证
算例二浅层滑带 19 0.3 28 25 300 深层滑带 19 0.3 28 23 300 其余部分 19 0.2 — — 3000 表 2 不同方法计算所得边坡安全系数与屈服系数
Table 2 Safety and yield factors of slopes by different methods
算例 Fs(浅层滑动面) Fs(深层滑动面) ks (浅层滑动面) kd (深层滑动面) 验证
算例一本研究计算结果 1.150 1.397 0.077 0.184 Slide计算结果 1.148 1.404 0.075 0.184 FLAC计算结果 1.120 1.348 0.078 0.129 验证
算例二本研究计算结果 1.470 1.167 0.233 0.080 Slide计算结果 1.467 1.169 0.229 0.080 FLAC计算结果 1.523 1.117 0.185 0.048 -
[1] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
[2] MAKDISI F I, SEED H B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division, 1978, 104(7): 849-867. doi: 10.1061/AJGEB6.0000668
[3] RATHJE E M, BRAY J D. Nonlinear coupled seismic sliding analysis of earth structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1002-1014. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1002)
[4] 秦雨樵, 汤华, 邓琴, 等. 强震作用下边坡屈服加速度计算方法的改进[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3439-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2019.htm QIN Yuqiao, TANG Hua, DENG Qin, et al. Improvement on the calculation method of slope critical acceleration under strong earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3439-3447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2019.htm
[5] 陈春舒, 夏元友. 基于极限分析的边坡实时动态Newmark滑块位移法[J]. 岩石力学与工程学报, 2016, 35(12): 2507-2515. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612015.htm CHEN Chunshu, XIA Yuanyou. A real-time dynamic Newmark sliding block method for slopes based on limit analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2507-2515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612015.htm
[6] BANDNI V, BIONDI G, CASCONE E, et al. A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 128-142. doi: 10.1016/j.soildyn.2015.01.010
[7] JI J, ZHANG W, ZHANG F, et al. Reliability analysis on permanent displacement of earth slopes using the simplified Bishop method[J]. Computers and Geotechnics, 2020, 117: 103286. doi: 10.1016/j.compgeo.2019.103286
[8] 李明, 辛鸿博. 人工土山的地震永久变形分析[J]. 岩土工程学报, 2015, 37(11): 2128-2132. doi: 10.11779/CJGE201511027 LI Ming, XIN Hongbo. Seismic permanent deformation of earth-fill hill[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2128-2132. (in Chinese) doi: 10.11779/CJGE201511027
[9] 黄帅, 宋波, 蔡德钩, 等. 近远场地震下高陡边坡的动力响应及永久位移分析[J]. 岩土工程学报, 2013, 35(增刊2): 768-773. http://www.cgejournal.com/cn/article/id/15488 HUANG Shuai, SONG Bo, CAI Degou, et al. Dynamic response and permanent displacement of high-steep slopes under near- and far-field earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 768-773. (in Chinese) http://www.cgejournal.com/cn/article/id/15488
[10] 宋健, 高广运. 基于速度脉冲地震动的边坡地震位移统一预测模型[J]. 岩土工程学报, 2013, 35(11): 2009-2017. http://www.cgejournal.com/cn/article/id/15330 SONG Jian, GAO Guangyun. Empirical predictive model for seismic displacement of slopes under velocity pulse-like ground motions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2009-2017. (in Chinese) http://www.cgejournal.com/cn/article/id/15330
[11] 杨涛, 张忠平, 马惠民. 多层复杂滑坡的稳定性分析与支护选择[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4189-4194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2088.htm YANG Tao, ZHANG Zhongping, MA Huimin. Stability analysis and supporting selection of multi-layer complex landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4189-4194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2088.htm
[12] 张俊文, 邹烨, 李玉琳. 大型多层次堆积体破坏模式及其稳定性[J]. 岩石力学与工程学报, 2016, 35(12): 2479-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612012.htm ZHANG Junwen, ZOU Ye, LI Yulin. Failure mechanism and stability analysis of big multi-layer deposit[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2479-2489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612012.htm
[13] WARTMAN J, SEED R B, BRAY J D. Shaking table modeling of seismically induced deformations in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 610-622. doi: 10.1061/%28ASCE%291090-0241%282005%29131%3A5%28610%29
[14] 艾挥, 吴红刚, 冯文强, 等. 多滑动面滑坡变形破坏机理的振动台试验研究[J]. 防灾减灾工程学报, 2018, 38(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201801010.htm AI Hui, WU Honggang, FENG Wenqiang, et al. Shaking table test study on deformation and failure mechanism of landslide wtih multiple slip surface[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 65-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201801010.htm
[15] LESHCHINSKY B A. Nested Newmark model to calculate the post-earthquake profile of slopes[J]. Engineering Geology, 2018, 233: 139-145. http://d.wanfangdata.com.cn/periodical/c7b18585b611b385c65cc9caf85cf430
[16] SONG J, FAN Q, FENG T, et al. A multi-block sliding approach to calculate the permanent seismic displacement of slopes[J]. Engineering Geology, 2019, 255: 48-58.
[17] SONG J, WU K, FENG T, et al. Coupled analysis of earthquake-induced permanent deformations at shallow and deep failure planes of slopes[J]. Engineering Geology, 2020, 274: 105688.
[18] SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. http://www.onacademic.com/detail/journal_1000039588501610_c145.html
[19] Rocscience Inc. RocScience, SLIDECP[R]. Toronto: Rocscience Inc. 2017.
[20] Itasca Consulting Group. Fast Lagrangian Analysis of Continua in 3 Dimensions[M]// Minneapolis: Itasca Consulting Group, 2018.
[21] 黄琳. 地震作用下成层土边坡的动力稳定性分析[D]. 成都: 西南交通大学, 2017. HUANG Lin. Dynamic Stability Analysis of Layered Soil Slope Under Seismic Action[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
-
期刊类型引用(3)
1. 何风贞,李桂臣,阚甲广,许兴亮,冯晓巍,孙元田. 岩石多尺度损伤研究进展. 煤炭科学技术. 2024(10): 33-53 . 百度学术
2. 刘嘉,薛熠,高峰,滕腾,梁鑫. 层理页岩水力裂缝扩展规律的相场法研究. 岩土工程学报. 2022(03): 464-473 . 本站查看
3. 熊祎滢,刘春,刘恒,唐超,周泽栖. 水力耦合作用下岩体破坏现状分析. 四川建筑. 2022(04): 210-212 . 百度学术
其他类型引用(6)
-
其他相关附件