• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

黄土丘陵区边坡动力响应及震陷变形分析方法

张彬, 邵帅, 邵生俊, 魏军政

张彬, 邵帅, 邵生俊, 魏军政. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011
引用本文: 张彬, 邵帅, 邵生俊, 魏军政. 黄土丘陵区边坡动力响应及震陷变形分析方法[J]. 岩土工程学报, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011
ZHANG Bin, SHAO Shuai, SHAO Shengjun, WEI Junzheng. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011
Citation: ZHANG Bin, SHAO Shuai, SHAO Shengjun, WEI Junzheng. Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 869-875. DOI: 10.11779/CJGE20220011

黄土丘陵区边坡动力响应及震陷变形分析方法  English Version

基金项目: 

国家自然科学基金青年基金项目 52108342

陕西省自然科学基础研究计划-引汉济渭联合基金项目 2019JLP-21

陕西省自然科学基础研究计划-引汉济渭联合基金项目 2019JLZ-13

陕西省水利科技计划项目 2021slkj-12

详细信息
    作者简介:

    张彬(1996—),男,博士研究生,主要从事黄土力学与土动力学等方面的研究工作。E-mail: 956870596@qq.com

    通讯作者:

    邵帅, E-mail: shaoshuai@xaut.edu.cn

  • 中图分类号: TU433

Dynamic response of slopes in hilly regions of loess and analysis method for their seismic subsidence deformation

  • 摘要: 黄土丘陵区易发生震陷型边坡失稳。通过动力离心模型试验和有限差分非线性动力分析方法研究地震时黄土边坡的动力响应及变形机制,探究了地震作用下概化黄土边坡的加速度及位移响应,提出了基于动单剪试验条件下黄土震陷系数经验公式及黄土场地震陷量估算方法,并应用于黄土边坡震陷变形计算。结果表明:黄土边坡对地震荷载具有放大效应,加速度放大系数沿高程呈非线性增大,且坡面动力放大效应大于坡体内部;边坡的震陷量与土层厚度关系密切,土层震陷系数随高程呈对数式增加;地震作用下黄土边坡的破坏形式是水平滑移变形与竖向震陷变形双向耦合的结果,震陷变形表现显著,边坡向临空面滑动,坡顶张拉裂隙和坡面错位裂隙大量发育,震陷沉降不均导致坡面形成错位阶梯。
    Abstract: The hilly region of loess is prone to slope instability of seismic subsidence. Through the dynamic centrifugal model tests and the finite difference nonlinear dynamic analysis methods, the dynamic response and deformation mechanism of loess slopes under earthquakes are studied. The acceleration and displacement responses of the generalized loess slopes under earthquakes are explored. The empirical formula for the seismic subsidence coefficient of loess and the method for estimating the seismic subsidence of loess field are proposed based on the dynamic single shear tests, and they are also used to calculate the seismic subsidence of loess slopes. The results show that the loess slope has a magnification effect on the seismic loads, the acceleration magnification coefficient increases nonlinearly along the elevation, and the dynamic magnification effects of the slope surface are greater than those inside the slope. The seismic subsidence of the slope is closely related to the thickness of the soil layer. The seismic subsidence coefficient increases logarithmically with elevation. The failure form of loess slopes under earthquakes is the result of the two-way coupling of horizontal sliding deformation and vertical seismic subsidence deformation. The tensile fissures at the top of the slope and the dislocation fissures on the slope surface are widely developed, and the uneven settlement of the seismic subsidence leads to the formation of dislocation steps on the slope surface.
  • 图  1   动力离心试验模型设计及传感器布置

    Figure  1.   Design and arrangement of sensors for dynamic centrifugal model tests

    图  2   汶川地震紫坪铺站台实测地震波(PGA≈0.2g

    Figure  2.   Measured seismic waves at Zipingpu platform of Wenchuan Earthquake (PGA≈0.2g)

    图  3   黄土边坡有限差分数值模型

    Figure  3.   Finite difference numerical model for loess slope

    图  4   黄土边坡沿坡面加速度响应规律

    Figure  4.   Time-history curves of horizontal displacement of slope surface at monitoring points

    图  5   黄土边坡沿坡肩铅垂线加速度响应规律

    Figure  5.   Acceleration response laws of loess slope along vertical line of slope shoulder

    图  6   坡面监测点水平位移时程曲线

    Figure  6.   Time-history curves of horizontal displacement of slope surface at monitoring points

    图  7   水平位移等值线分布

    Figure  7.   Contours of horizontal displacement

    图  8   监测点动剪应变时程曲线(A7)

    Figure  8.   Time-history curve of dynamic shear strain of monitoring points

    图  9   不同高度震陷系数及震陷累积位移

    Figure  9.   Seismic subsidence coefficients and cumulative displacements at different elevations

    图  10   黄土边坡震陷变形等值线图

    Figure  10.   Contours of seismic subsidence deformation of loess slope

    图  11   地震作用下竖向位移时程曲线(0.3g

    Figure  11.   Time-history curves of vertical displacement under earthquakes

    图  12   离心机试验黄土边坡破坏特征

    Figure  12.   Failure characteristics of loess slope in centrifugal model tests

    图  13   震陷型黄土边坡破坏特征

    Figure  13.   Failure characteristics of loess slope of seismic subsidence

    表  1   兰州黄土基本物理性质指标

    Table  1   Basic physical properties of Lanzhou loess

    天然密度ρ/(g·cm-3) 含水率w/% 干密度ρd/(g·cm-3) 液限wL/% 塑限wP/% 塑性指数IP/%
    1.38 8.2 1.27 28.2 17.2 11.0
    下载: 导出CSV

    表  2   黄土边坡数值计算参数

    Table  2   Numerical parameters of loess slope

    体积模量/MPa 剪切模量/MPa 泊松比 密度ρ(g·cm-3) 黏聚力c/kPa 内摩擦角φ/(°)
    27.5 12.7 0.3 1.38 30 26
    下载: 导出CSV
  • [1] 王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003: 1-7.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003: 1-7. (in Chinese)

    [2] 刘立平, 雷尊宇, 周富春. 地震边坡稳定分析方法综述[J]. 重庆交通学院学报, 2001, 20(3): 83-88. doi: 10.3969/j.issn.1674-0696.2001.03.022

    LIU Liping, LEI Zunyu, ZHOU Fuchun. The evaluation of seismic slope stability analysis methods[J]. Journal of Chnongqing Jiaotong University, 2001, 20(3): 83-88. (in Chinese) doi: 10.3969/j.issn.1674-0696.2001.03.022

    [3] 王兰民, 张振中. 地震时黄土震陷量的估算方法[J]. 自然灾害学报, 1993, 2(3): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199303015.htm

    WANG Lanmin, ZHANG Zhenzhong. A method of estimating the quantity of seismic subsidence in loess deposits during earthquakes[J]. Journal of Natural Disasters, 1993, 2(3): 85-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH199303015.htm

    [4] 孙军杰, 王兰民, 秋仁东, 等. 基于物理力学机制的黄土震陷数学估算模型[J]. 工程力学, 2012, 29(5): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201205011.htm

    SUN Junjie, WANG Lanmin, QIU Rendong, et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics, 2012, 29(5): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201205011.htm

    [5] 曹继东, 王权民, 陈正汉. 厦门填海土的振动台试验研究[J]. 岩石力学与工程学报, 2004, 23(20): 3529-3535. doi: 10.3321/j.issn:1000-6915.2004.20.025

    CAO Jidong, WANG Quanmin, CHEN Zhenghan. Testing study of shaking table on made-land soil in seabeach of Amoy[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3529-3535. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.20.025

    [6] 陈正汉, 李刚, 王权民, 等. 厦门典型地基土的地震反应分析与评价[J]. 岩石力学与工程学报, 2005, 24(21): 3864-3875. doi: 10.3321/j.issn:1000-6915.2005.21.010

    CHEN Zhenghan, LI Gang, WANG Quanmin, et al. Analysis and evaluation of seismic reaction of typical foundation soils in Xiamen[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3864-3875. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.21.010

    [7] 翁效林, 熊元克, 裴凯. 黄土震陷变形特征的离心模型试验研究[J]. 矿物学报, 2006, 26(4): 460-464. doi: 10.3321/j.issn:1000-4734.2006.04.016

    WENG Xiaolin, XIONG Yuanke, PEI Kai. Study of loess seismic subsidence deformation characteristics by centrifuge scale-down test[J]. Acta Mineralogica Sinica, 2006, 26(4): 460-464. (in Chinese) doi: 10.3321/j.issn:1000-4734.2006.04.016

    [8] 关君蔚. 甘肃黄土丘陵地区水土保持林林种的调查研究[J]. 林业科学, 1962(4): 268-282. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE196204001.htm

    GUAN Junwei. Investigation on forest species of soil and water conservation in loess hilly region of Gansu Province[J]. Scientia Silvae Sinicae, 1962(4): 268-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE196204001.htm

    [9] 李京爽, 侯瑜京, 徐泽平, 等. R500B离心机振动台动力试验性能分析[J]. 长江科学院院报, 2012, 29(4): 67-70, 79. doi: 10.3969/j.issn.1001-5485.2012.04.015

    LI Jingshuang, HOU Yujing, XU Zeping, et al. Experimental analysis on dynamic characters of R500B shake table for the IWHR geotechnical centrifuge[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 67-70, 79. (in Chinese) doi: 10.3969/j.issn.1001-5485.2012.04.015

    [10]

    LI Y D, ZHENG S, LUO W L, et al. Design and performance of a laminar shear container for shaking table tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 135: 106157.

    [11] 邵帅. 原状黄土复杂应力条件的震陷机理与动力响应特性[D]. 西安: 西安理工大学, 2021.

    SHAO Shuai. Seismic Mechanism and Dynamic Response Characteristics of Complex Stress Condition in Situ Loess[D]. Xi'an: Xi'an University of Technology, 2021. (in Chinese)

    [12] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013: 210-234.

    CHEN Yumin, XU Dingping. FLAC/FLAC3D Foundation and Engineering Example[M]. 2nd ed. Beijing: China Water & Power Press, 2013: 210-234. (in Chinese)

    [13] 邵生俊, 王强, 吴飞洁. 一种新型动单剪仪的研发与试验验证[J]. 岩土力学, 2017, 38(6): 1841-1848. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706036.htm

    SHAO Shengjun, WANG Qiang, WU Feijie. Development and test verification of a new cyclic simple shear apparatus[J]. Rock and Soil Mechanics, 2017, 38(6): 1841-1848. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706036.htm

    [14] 吴飞洁. 非饱和黄土震陷变形的动单剪试验研究[D]. 西安: 西安理工大学, 2017.

    WU Feijie. Experimental Study on the Deformation of Dynamic Shear of Unsaturated Loess[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)

    [15] 张振中, 张冬丽, 刘红玫. 黄土震陷灾害典型震例的综合研究[J]. 西北地震学报, 2005, 27(1): 36-41, 46.

    ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern Seismological Journal, 2005, 27(1): 36-41, 46. (in Chinese)

  • 期刊类型引用(1)

    1. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术

    其他类型引用(9)

图(13)  /  表(2)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  57
  • PDF下载量:  114
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-01-02
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回