Evaluation of collaborative disposal of heavy metals in MSWI fly ash along with its environmental risk assessment
-
摘要: 针对中国南方某地区富含Pb和Cd的垃圾焚烧飞灰,采用水泥与螯合剂进行固化/稳定化处置,分析水泥掺量和养护龄期对Cu、Zn、Pb、Cd离子浸出浓度的影响,结合微观形貌、化学组分及重金属形态分布进行重金属固化机理探究,比较了水泥固化与水泥-螯合剂协同处置的效果并提出优化方案,最后基于3种环境风险评估方法对处置前后的飞灰进行环境风险评价。试验结果表明:10%水泥掺入时大部分重金属处置效率可超过80%,且随着水泥掺量和养护龄期的增加,由于水铝钙石的固化作用,浸出浓度逐渐减小;采用水泥/螯合剂协同处置相比单一水泥固化能够减小10%的水泥用量,从而增加单位体积的飞灰处置量。经过水泥固化后,飞灰重金属的环境风险均有降低,水泥掺量分别为10%,20%,30%和40%时,飞灰重金属综合毒性指数风险值(STI)相比原灰减小10.2%,21.4%,41.8%和53.2%。结合本文数据和文献调研,框定了STI大于0.06时为高风险区的阈值,可较为广泛地应用于飞灰重金属处置的效果评价。Abstract: Aiming at the municipal solid waste incineration fly ash rich in Pb and Cd in a certain area of South China, cement and chelating agent are used for solidification/stabilization. The effects of cement content and curing time on the toxicity of Cu, Zn, Pb and Cd are analyzed. Based on the micro morphology, chemical components and chemical speciation of heavy metals (HMs), the mechanism of cement solidification is explored. The effects of co-disposal with cement-chelating agent and cement alone are compared, and an optimization scheme is proposed. In addition, the environmental risk of fly ash before and after disposal is evaluated by three environmental risk assessment methods. The test results show when the cement of 10% is added, the disposal efficiency of most HMs exceeds 80%. With the increase of the cement content and curing time, the leaching toxicity is gradually reduced due to the formation of hydrocalumite. The co-disposal with cement-chelating agent reduces cement consumption by 10% compared with that with cement alone, thus increasing the disposal volume of fly ash per unit volume. After the cement solidification, the environmental risk of HMs is reduced. When the cement content is 10%, 20%, 30% and 40%, the synthesis toxicity index (STI) of HMs in fly ash decreases by 10.2%, 21.4%, 41.8% and 53.2%, respectively. Based on the proposed experimental data and the literature researches, the threshold value of STI greater than 0.06 is defined as the high-risk zone, which can be widely used in the effect evaluation of disposal methods for HMs in fly ash.
-
Keywords:
- fly ash /
- cement soil dication /
- leaching toxicity /
- hazardous waste landfill /
- risk assessment
-
-
表 1 飞灰物理化学特性试验结果
Table 1 Test results of physical and chemical properties of fly ash
物理特性 化学特性 含水率/% 相对质量密度 堆积密度/(g·cm-3) 比表面积/(m2·g-1) 颗粒分布 氯离子含量/% 重金属总量/(mg·kg-1) < 0.005 mm 0.005~0.075 mm 0.075~2 mm Cu Zn Pb Cd 6.57 2.10 2.35 4.862 3.56% 2.50% 93.94% 31.53 730 7400 2200 340 表 2 不同城市飞灰毒性试验结果
Table 2 Tests results of toxicity of fly ash in different cities
重金属 硫酸硝酸法浸出浓度/(mg·L-1) 醋酸法或TCLP法浸出浓度/(mg·L-1) 贺州 上海[20] 杭州[21] 宁波[21] 湖州[21] 规范限值* 贺州a 上海[20]b 重庆[22]a 厦门[23]a 广州[24]a 规范限值** Cu 0.15 0.58 0.13 0.24 2.29 120 12.35 0.31 10.26 5.92 9.21 40 Zn 1.52 4.29 0.36 40.76 7.44 120 99.68 2.14 33.55 58.18 1.06 100 Pb 23.79 8.55 未检出 未检出 0.34 1.2 7.25 6.31 4.18 5.01 3.98 0.25 Cd 0.01 0.17 0.01 0.20 0.01 0.6 11.09 0.08 4.25 3.27 5.33 0.15 注:*参考《危险废物填埋控制标准:GB18598—2019》,**参考《生活垃圾卫生填埋污染控制标准:GB16889—2008》;a为醋酸法测得结果,b为TCLP法测得结果。 表 3 硫酸硝酸法处置效率
Table 3 Disposal efficiencies of sulphuric acid & nitric acid method
重金属 养护龄期/d 水泥掺量 10% 20% 30% 40% Cu 7 85.2% 89.2% 90.5% 88.9% 14 90.4% 89.2% 90.5% 93.3% 28 100.0% 100.0% 100.0% 100.0% Zn 7 87.8% 92.4% 93.4% 93.8% 14 89.8% 92.6% 94.4% 95.6% 28 89.0% 94.7% 93.4% 95.1% Pb 7 81.1% 92.7% 94.4% 95.7% 14 87.9% 93.0% 95.5% 96.8% 28 87.4% 92.7% 95.7% 97.1% 表 4 醋酸法处置效率
Table 4 Disposal efficiencies of acetic acid buffer solution method
重金属 养护龄期/d 水泥掺量 10% 20% 30% 40% Cu 7 85.6% 99.0% 99.9% 99.9% 14 90.1% 99.9% 100.0% 100.0% 28 90.6% 99.8% 100.0% 100.0% Zn 7 42.4% 91.3% 100.0% 100.0% 14 51.0% 99.9% 100.0% 100.0% 28 49.2% 99.9% 100.0% 100.0% Pb 7 88.7% 98.3% 99.6% 99.8% 14 92.0% 99.8% 99.8% 100.0% 28 88.0% 99.3% 99.0% 99.1% Cd 7 50.6% 86.8% 100.0% 100.0% 14 62.0% 97.7% 100.0% 100.0% 28 63.8% 98.6% 100.0% 100.0% 表 5 无机螯合剂处置效率
Table 5 Disposal efficiencies of inorganic chelating agent
重金属 螯合剂 无机螯合剂掺量 4% 6% 8% 10% Cu Na2S 47.4% 57.4% 86.4% 98.7% Na3PO4 -7.4% 5.6% 13.5% 25.7% Zn Na2S -79.8% -83.4% -57.3% -62.3% Na3PO4 -10.2% -16.1% 3.6% 7.9% Pb Na2S 54.6% 53.6% 52.6% 51.6% Na3PO4 -13.9% -23.1% -7.2% -12.6% Cd Na2S -9.2% -11.9% 7.8% 3.4% Na3PO4 -51.0% 44.0% 57.9% 94.3% 表 6 有机螯合剂稳定化飞灰浸出浓度及处置效率
Table 6 Test results of toxicity and disposal efficiencies of fly ash stabilized by organic chelating agent
浸出规范方法 工况 重金属浸出毒性/(mg·L-1) Cu Zn Pb Cd 硫酸硝酸法 原状飞灰 0.15 1.52 23.79 0.01 有机螯合飞灰 0.05 1.11 8.48 0 处置效率η 66.7% 27.0% 64.2% 100% 醋酸法 原状飞灰 12.35 99.68 7.25 11.09 有机螯合飞灰 0.04 76.31 1.70 0.99 处置效率η 99.7% 21.5% 76.0% 90.8% 表 7 硫酸硝酸法及醋酸法处置效率
Table 7 Disposal efficiencies of sulphuric acid & nitric acid method and acetic acid buffer solution method
浸出规范方法 重金属 工况 水泥掺量 10% 20% 30% 40% 硫酸硝酸法 Pb 水泥固化 81.1% 92.7% 94.4% 95.7% 协同处置 89.4% 95.7% 96.6% 97.7% 醋酸法 Pb 水泥固化 88.7% 98.3% 99.6% 99.8% 协同处置 89.3% 98.7% 99.8% 100.0% Cd 水泥固化 50.6% 86.8% 100.0% 100.0% 协同处置 76.2% 98.6% 100.0% 100.0% 表 8 各重金属的毒性系数
Table 8 Toxicity coefficients of HMs
重金属离子 Cu Zn Pb Cd Tr 5 1 5 30 表 9 各重金属形态的生物有效性系数
Table 9 Bioavailability coefficients of HMs with different chemical speciations
重金属形态 F1 F2 F3 F4 Ei 7 5 2 0 -
[1] 国家统计局. 国际统计年鉴[M]. 北京: 中国统计出版社, 2019. National Bureau of Statistics of China. International Statistical Yearbook[M]. Beijing: China Statistics Press, 2019. (in Chinese)
[2] WANG L, JIN Y Y, NIE Y F. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 334-343.
[3] TIAN H Z, GAO J J, LU L, et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China[J]. Environmental Science & Technology, 2012, 46(18): 10364-10371.
[4] LU J W, ZHANG S K, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: a comparison with developed regions[J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014
[5] 孙进, 谭欣, 张曙光, 等. 我国14座生活垃圾焚烧厂飞灰的物化特性分析[J]. 环境工程, 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017 SUN Jin, TAN Xin, ZHANG Shuguang, et al. Composition and melting characteristics of fly ash from 14 MSWI plants in China[J]. Environmental Engineering, 2021, 39(10): 124-128. (in Chinese) doi: 10.13205/j.hjgc.202110017
[6] 王雷, 金宜英, 李润东, 等. 生活垃圾焚烧飞灰的污染特性[J]. 环境科学与技术, 2010, 33(7): 21-26, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201007007.htm WANG Lei, JIN Yiying, LI Rundong, et al. Characterization of MSWI fly ash[J]. Environmental Science & Technology, 2010, 33(7): 21-26, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201007007.htm
[7] TAGHIPOUR H, AMJAD Z, ASLANI H, et al. Characterizing and quantifying solid waste of rural communities[J]. Journal of Material Cycles and Waste Management, 2016, 18(4): 790-797. doi: 10.1007/s10163-015-0365-z
[8] 岳波, 张志彬, 孙英杰, 等. 中国农村生活垃圾的产生特征研究[J]. 环境科学与技术, 2014, 37(6): 129-134. (YUE Bo, ZHANG Zhibin, SUN Yingjie, et al. Characteristics of rural household solid wastes in China[J]. Environmental Science & Technology, 2014, 37(6): 129-134.
[9] BIE R S, CHEN P, SONG X F, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J]. Journal of the Energy Institute, 2016, 89(4): 704-712. doi: 10.1016/j.joei.2015.04.006
[10] FAN C C, WANG B M, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production, 2021, 319: 128790. doi: 10.1016/j.jclepro.2021.128790
[11] MA W C, CHEN D M, PAN M H, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177.
[12] LU S F, FENG S J. Coupled bio-hydro-thermo-mechanical interactions of landfilled MSW based on a multi-phase, multi-component numerical model[J]. Computers and Geotechnics, 2022, 144: 104659. doi: 10.1016/j.compgeo.2022.104659
[13] SUNDARAY S K, NAYAK B B, LIN S, et al. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi Basin, India[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1837-1846.
[14] LIU H L, LI L Q, YIN C Q, et al. Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake[J]. Journal of Environmental Sciences, 2008, 20(4): 390-397. doi: 10.1016/S1001-0742(08)62069-0
[15] NEMATI K, ABU BAKAR N K, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410.
[16] HAKANSON L. An ecological risk index for aquatic pollution control-a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
[17] 郭彦海, 孙许超, 张士兵, 等. 上海某生活垃圾焚烧厂周边土壤重金属污染特征、来源分析及潜在生态风险评价[J]. 环境科学, 2017, 38(12): 5262-5271. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712046.htm GUO Yanhai, SUN Xuchao, ZHANG Shibing, et al. Pollution characteristics, source analysis and potential ecological risk assessment of heavy metals in soils surrounding a municipal solid waste incineration plant in Shanghai[J]. Environmental Science, 2017, 38(12): 5262-5271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201712046.htm
[18] YAN F, LIU C L, WEI B W. Evaluation of heavy metal pollution in the sediment of Poyang Lake based on stochastic geo-accumulation model (SGM)[J]. Science of the Total Environment, 2019, 659: 1-6. doi: 10.1016/j.scitotenv.2018.12.311
[19] LUAN J D, LI A M, SU T, et al. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1109-1114.
[20] 李华, 司马菁珂, 罗启仕, 等. 危险废物焚烧飞灰中重金属的稳定化处理[J]. 环境工程学报, 2012, 6(10): 3740-3746. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201210072.htm LI Hua, SIMA Jingke, LUO Qishi, et al. Stabilization of heavy metals in hazardous waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3740-3746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201210072.htm
[21] 沈东升, 郑元格, 姚俊, 等. 典型固体废物焚烧飞灰的污染物特性研究[J]. 环境科学, 2011, 32(9): 2610-2616. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201109021.htm SHEN Dongsheng, ZHENG Yuange, YAO Jun, et al. Analysis of pollution characteristics of solid waste incinerator fly ash in Zhejiang Province[J]. Environmental Science, 2011, 32(9): 2610-2616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201109021.htm
[22] 李静, 周斌, 易新建, 等. 垃圾焚烧飞灰重金属稳定化药剂处理效果[J]. 环境工程学报, 2016, 10(6): 3242-3248. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606073.htm LI Jing, ZHOU Bin, YI Xinjian, et al. Treatment efficiencies of heavy metals in municipal solid waste incineration fly ash with stabilization agents[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3242-3248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606073.htm
[23] 张厚坚, 刘海娟, 黄世清, 等. 城市生活垃圾焚烧处理过程中重金属迁移规律研究[J]. 环境工程学报, 2013, 7(11): 4569-4574. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201311074.htm ZHANG Houjian, LIU Haijuan, HUANG Shiqing, et al. Study on the migration rule of heavy metal in waste incineration[J]. Chinese Journal of Environmental Engineering, 2013, 7(11): 4569-4574. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201311074.htm
[24] 马倩, 陈玉放, 靳焘, 等. 城市生活垃圾焚烧发电飞灰中重金属的固定化研究[J]. 生态环境学报, 2018, 27(9): 1716-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201809018.htm MA Qian, CHEN Yufang, JIN Tao, et al. Immobilization of heavy metals in fly ash from municipal solid waste incineration power generation[J]. Ecology and Environmental Sciences, 2018, 27(9): 1716-1723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201809018.htm
[25] WANG W X, GAO X P, LI T H, et al. Stabilization of heavy metals in fly ashes from municipal solid waste incineration via wet milling[J]. Fuel, 2018, 216: 153-159.
[26] LI X Y, CHEN Q Y, ZHOU Y S, et al. Stabilization of heavy metals in MSWI fly ash using silica fume[J]. Waste Management, 2014, 34(12): 2494-2504.
[27] ROJAS R. Copper, lead and cadmium removal by Ca Al layered double hydroxides[J]. Applied Clay Science, 2014, 87: 254-259.
[28] 天娇, 郭清海. 水铝钙石类阴离子黏土在水污染处理领域应用的研究现状[J]. 环境化学, 2013, 32(8): 1571-1579. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201308024.htm TIAN Jiao, GUO Qinghai. Research on water contamination treatment by hydrocalumite[J]. Environmental Chemistry, 2013, 32(8): 1571-1579. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201308024.htm
[29] 朱子晗, 陈卫华, 华银锋, 等. 垃圾焚烧飞灰重金属药剂稳定化研究进展[J]. 化工进展, 2021, 40(11): 6358-6368. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202111051.htm ZHU Zihan, CHEN Weihua, HUA Yinfeng, et al. Research progress and consideration on medicament stabilization of heavy metals in waste incineration fly ash[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6358-6368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202111051.htm
[30] 蒋建国, 王伟, 李国鼎, 等. 重金属螯合剂处理焚烧飞灰的稳定化技术研究[J]. 环境科学, 1999, 20(3): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ903.003.htm JIANG Jianguo, WANG Wei, LI Guoding, et al. Experimental study on the chemical stabilization technology in treating with fly ash using heavy metal chelating agent[J]. Chinese Journal of Enviromental Science, 1999, 20(3): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ903.003.htm
[31] 王金波, 秦瑞香. 有机螯合剂稳定飞灰中的重金属[J]. 环境科学与技术, 2013, 36(9): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201309029.htm WANG Jinbo, QIN Ruixiang. Organic chelator for the stabilization of heavy metals in fly ash[J]. Environmental Science & Technology, 2013, 36(9): 139-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201309029.htm
[32] 李卫华. 固化/稳定化飞灰中重金属溶出行为及环境风险评估研究[D]. 青岛: 青岛理工大学, 2019. LI Weihua. Study on the Leaching Behavior and Environmental Risk Assessment of Heavy Metals in Solidified/Stabilized Municipal Solid Waste Incineration Fly Ash[D]. Qingdao: Qingdao Tehcnology University, 2019. (in Chinese)
[33] 马栋豪. 氯氧镁水泥固化垃圾焚烧飞灰中重金属的研究[D]. 杭州: 浙江工业大学, 2020. MA Donghao. Immobilization of Heavy Metals in MSWI Fly Ash by Magnesium Oxychloride Cement[D]. Hangzhou: Zhejiang University of Technology, 2020. (in Chinese)
[34] 王开, 吴新, 梁财, 等. 基于二次铝灰的地聚反应稳固化垃圾飞灰[J]. 中国环境科学, 2020, 40(10): 4421-4428. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202010031.htm WANG Kai, WU Xin, LIANG Cai, et al. Experimental study on the stabilization/solidification of MSWIFA by geopolymerization based on secondary aluminum dross[J]. China Environmental Science, 2020, 40(10): 4421-4428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202010031.htm
[35] 宋倩楠, 王峰, 童立志, 等. 药剂螯合对飞灰重金属形态及浸出行为的影响[J]. 应用化工, 2021, 50(3): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202103004.htm SONG Qiannan, WANG Feng, TONG Lizhi, et al. Effect of chelating agents on forms and leaching behavior of heavy metals in fly ash[J]. Applied Chemical Industry, 2021, 50(3): 571-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202103004.htm
-
期刊类型引用(1)
1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 . 百度学术
其他类型引用(0)
-
其他相关附件