• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥土复合管桩竖向承载特性现场试验

梁善斋

梁善斋. 水泥土复合管桩竖向承载特性现场试验[J]. 岩土工程学报, 2021, 43(S2): 280-283. DOI: 10.11779/CJGE2021S2065
引用本文: 梁善斋. 水泥土复合管桩竖向承载特性现场试验[J]. 岩土工程学报, 2021, 43(S2): 280-283. DOI: 10.11779/CJGE2021S2065
LIANG Shan-zhai. Field tests on vertical bearing capacity of pipe piles in cement-improved soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 280-283. DOI: 10.11779/CJGE2021S2065
Citation: LIANG Shan-zhai. Field tests on vertical bearing capacity of pipe piles in cement-improved soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 280-283. DOI: 10.11779/CJGE2021S2065

水泥土复合管桩竖向承载特性现场试验  English Version

详细信息
    作者简介:

    梁善斋(1964— ),男,高级工程师,主要从事高速公路建设技术与质量管理工作。E-mail: 1526640725@qq.com

  • 中图分类号: TU473

Field tests on vertical bearing capacity of pipe piles in cement-improved soil

  • 摘要: 依托某水泥土复合管桩工现场载荷试验,分析了竖向荷载作用下水泥土复合管桩轴力、桩侧摩阻力和桩身压缩量沿桩身的分布特征。测试结果表明,竖向荷载下水泥土复合管桩荷载-沉降曲线呈缓变性,桩身轴力沿桩身近似呈线性递减,桩端荷载约占总荷载的15%~20%,水泥土复合管桩桩侧摩阻力承担80%~85%的竖向荷载;水泥土与管桩的界面摩阻力较天然土与管桩界面摩阻力提升6~9倍;水泥土复合管桩桩身压缩量占总沉降量的为20%~30%。研究成果可为水泥土复合管桩竖向承载设计计算提供依据。
    Abstract: In order to study the load transfer of the pipe piles in cement-improved soil under vertical loads, the axial load tests are conducted to analyze the distribution characteristics of axial force, side friction and compression along the pile body. The results show that the load-settlement curves of the pipe piles in cement-improved soil change slowly and gradually. The axial force of the piles decreases linearly along the pile depth. The vertical loads at the bottom of the piles range from 15% to 20% of the vertical loads, and the side friction of the piles in cement-improved soil bears 80% ~ 85% of the vertical loads. The side friction of the piles in cement-improved soil is 6~9 times that of the piles in natural surrounding soil. The ratio of the pile compression to the total settlement is 20%~30%. The research results may provide technical support for the vertical bearing design practice of the piles in cement-improved soil.
  • 图  1   地层分布及应变计布设示意图

    Figure  1.   Stratigraphic distribution and layout of strain gauges

    图  2   试桩V-I的Q-s曲线

    Figure  2.   Q-s curves of pipe pile V-I

    图  3   试桩V-I的s-lgt曲线

    Figure  3.   s-lgt curves of pipe pile V-I

    图  4   试桩V-I的桩身轴力

    Figure  4.   Axial forces of pipe pile V-I

    图  5   试桩V-I桩侧摩阻力

    Figure  5.   Side friction of pipe pile V-I

    图  6   试桩V-I桩身压缩量

    Figure  6.   Compressions of pipe pile V-I

    图  7   试桩V-I桩端阻力与位移关系曲线

    Figure  7.   Relationship curve between end resistance and displacement of pile V-I

    表  1   土层物理力学参数

    Table  1   Physical and mechanical parameters of soil layer

    地层名称层厚/m含水率/%重度/(kN·m-3)黏聚力/kPa内摩擦角/(°)压缩模量/MPa
    粉质黏土229.719.0329.616.65.10
    淤泥质粉质黏土237.218.2814.210.43.72
    粉土728.218.8810.920.68.86
    粉质黏土630.218.7429.116.96.82
    淤泥质粉质黏土2539.117.9714.010.23.16
    粉质黏土630.618.9233.915.96.76
    粉土225.119.5710.221.111.05
    粉砂620
    黏土336.418.5231.814.35.24
    下载: 导出CSV

    表  2   各桩型桩侧摩阻力

    Table  2   Side frictions of various piles

    土层复合桩/kPa管桩/kPa灌注桩/kPa复合桩/管桩复合桩/灌注桩
    粉质黏土12516.0014.007.488.55
    淤泥质粉质黏土657.006.008.6310.08
    粉土12018.0016.006.206.96
    下载: 导出CSV

    表  3   试桩极限荷载下沉降压缩量

    Table  3   Settlement compressions of piles under load of 2200 kN

    试桩编号桩顶荷载/kN桩顶沉降量/mm桩身压缩量/mm桩端沉降/mm桩身压缩沉降比
    V-I220010.232.827.4127.57%
    V-II220012.653.029.6323.87%
    V-III220012.103.148.9625.95%
    下载: 导出CSV
  • [1] 董平, 陈征宙, 秦然. 混凝土芯水泥土搅拌桩在软土地基中的应用[J]. 岩土工程学报, 2002, 24(2): 204-207. doi: 10.3321/j.issn:1000-4548.2002.02.017

    DONG Ping, CHEN Zheng-zhou, QIN Ran. Use of concrete-cored DCM pile in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 204-207. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.02.017

    [2] 李俊才, 张永刚, 邓亚光, 等. 管桩水泥土复合桩荷载传递规律研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3068-3076. doi: 10.13722/j.cnki.jrme.2014.s1.068

    LI Jun-cai, ZHANG Yong-gang, DENG Ya-guang, et al. Load transfer mechanism of composite pile composed of jet-mixing cement and phc pile with core concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3068-3076. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.s1.068

    [3] 吴迈, 窦远明, 王恩远. 水泥土组合桩荷载传递试验研究[J]. 岩土工程学报, 2004, 26(3): 432-434. doi: 10.3321/j.issn:1000-4548.2004.03.029

    WU Mai, DOU Yuan-ming, WANG En-yuan. A study on load transfer mechanism of stiffened DCM pile[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 432-434. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.03.029

    [4] 李立业. 水泥土复合管桩承载特性研究[D]. 南京: 东南大学, 2016.

    LI Li-ye. Study on the Bearing Capacity of Stiffened DCM Pile[D]. Nanjing: Southeast University, 2016. (in Chinese)

    [5] 叶观宝, 蔡永生, 张振. 加芯水泥土桩复合地基桩土应力比计算方法研究[J]. 岩土力学, 2016, 37(3): 672-678. doi: 10.16285/j.rsm.2016.03.008

    YE Guan-bao, CAI Yong-sheng, ZHANG Zhen. Research on calculation of pile-soil stress ratio for composite foundation reinforced by stiffened deep mixed piles[J]. Rock and Soil Mechanics, 2016, 37(3): 672-678. (in Chinese) doi: 10.16285/j.rsm.2016.03.008

    [6]

    JAMSAWANG P, BERGADO D T, VOOTTIPRUEX P. Field behaviour of stiffened deep cement mixing piles[J]. Proceedings of the ICE-Ground Improvement, 2010, 164(1): 33-49.

    [7] 钱于军, 许智伟, 邓亚光等. 劲性复合管桩的工程应用与试验分析[J]. 岩土工程学报, 2013, 35(增刊2): 998-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2190.htm

    QIAN Yu-jun, XU Zhi-wei, DENG Ya-guang, et al.Engineering application and test analysis of strength composite piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 998-1001. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2190.htm

    [8]

    VOOTTIPRUEX P, SUKSAWAT T, BERGADO D T, et al. Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads[J]. Computers and Geotechnics, 2011, 38(3): 318-329. doi: 10.1016/j.compgeo.2010.11.006

    [9]

    WONGLERT A, JONGPRADIST P. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles[J]. Computers and Geotechnics, 2015, 69: 93-104. doi: 10.1016/j.compgeo.2015.05.003

    [10]

    WANG A H, ZHANG D W, DENG Y G. A simplified approach for axial response of single precast concrete piles in cement-treated soil[J]. International Journal of Civil Engineering, 2018, 16(10): 1491-1501. doi: 10.1007/s40999-018-0341-9

    [11]

    WANG A H, ZHANG D W, DENG Y G.. Lateral response of single piles in cement-improved soil: numerical and theoretical investigation[J]. Computers and Geotechnics, 2018, 102: 164-178. doi: 10.1016/j.compgeo.2018.06.014

    [12] 王安辉, 章定文, 谢京臣. 软黏土中劲性复合桩水平承载特性p-y 曲线研究[J]. 岩土工程学报, 2020, 42(2): 381-389. https://www.cnki.com.cn/Article/CJFDTOTAL-XBKJ201129003.htm

    WANG An-hui, ZHANG Ding-wen, XIE Jing-chen. p-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 381-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBKJ201129003.htm

图(7)  /  表(3)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  25
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回