• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软土地区桩基横向抗力系数的精细化取值研究

张俊云, 张乐, 冯君

张俊云, 张乐, 冯君. 软土地区桩基横向抗力系数的精细化取值研究[J]. 岩土工程学报, 2021, 43(S2): 202-207. DOI: 10.11779/CJGE2021S2048
引用本文: 张俊云, 张乐, 冯君. 软土地区桩基横向抗力系数的精细化取值研究[J]. 岩土工程学报, 2021, 43(S2): 202-207. DOI: 10.11779/CJGE2021S2048
ZHANG Jun-yun, ZHANG Le, FENG Jun. Refined value of lateral resistance coefficient of pile foundation in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 202-207. DOI: 10.11779/CJGE2021S2048
Citation: ZHANG Jun-yun, ZHANG Le, FENG Jun. Refined value of lateral resistance coefficient of pile foundation in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 202-207. DOI: 10.11779/CJGE2021S2048

软土地区桩基横向抗力系数的精细化取值研究  English Version

基金项目: 

四川省科技计划重点项目 2021YFS0321

详细信息
    作者简介:

    张俊云(1974— ),男,博士,副教授,主要从事土力学与基础工程方面的教学和科研。E-mail: zjy74@126.com

  • 中图分类号: TU473.1

Refined value of lateral resistance coefficient of pile foundation in soft soil areas

  • 摘要: m法是横向受荷桩桩身变形和内力分析的一种常用方法。在没有试桩的条件下,m法中横向抗力系数的比例系数m值只能根据地基土的类型等从规范推荐的较大范围中取值,对工程经验依赖性强,具有较大的随机性。将沪通铁路沿线主要软土按压缩特性分为11亚类,通过有限元模拟分析了水平力H、泥面(桩顶)水平位移和土体压缩指数Cc等对m值的影响作用;经统计分析建立了m值与Y0,Cc间的拟合关系式,并以现场水平静载试验对其进行校核验证。结果表明:m值随H,Y0Cc的增大而减小,且衰减速度不断减小;桩径Dm值有一定影响,现有桩径水平中D=1.25 m最佳;现场试验修正后的m值拟合关系计算可靠,且能依据土体变形参数精细化取值。
    Abstract: The m method is a common method to analyze the deformation and internal force of laterally loaded piles. In the absence of test piles, the ratio coefficient m value of lateral resistance coefficient in the m method can only be taken from a wide range recommended by the relevant code according to the type of foundation soil, etc., highly dependent on engineering experience and random. Main soft soils along Shanghai-Nantong Railway are classified into 11 subcategories according to the compression characteristics. The influences of horizontal force H, horizontal displacementY0 of mud surface (pile top), pile diameter D and soil compression indexCc on m value are analyzed through the numerical test method. The fitting relation between m andCc and the relation between m andY0 are established through statistical analysis, and are verified by the field horizontal static load tests. The results show that the m value decreases with H,Y0 andCc, and the attenuation speed decreases continuously. D has a certain influence on the m value, corresponding to the best diameter of pile D=1.25 m. The fitting formula for m value corrected by the field tests is reliable and can be fine-tuned according to the deformation parameters of soils.
  • 图  1   地层概化

    Figure  1.   Stratigraphic generalization

    图  2   有限元模型

    Figure  2.   Finite element model

    图  3   土样压缩系数Cc与压缩指数av关系

    Figure  3.   Relationship between compression coefficientCc of soil samples and compression indexav

    图  4   数值模拟结果(D=1.25 m)

    Figure  4.   Results of numerical simulation (D=1.25 m)

    图  5   桩径Dm值关系

    Figure  5.   Relationship between pile diameter D and m value

    图  6   压缩指数Ccm值关系

    Figure  6.   Relationship between compression index of soilCc and m value

    图  7   单桩水平静载现场试验

    Figure  7.   Horizontal static load field tests on single pile

    图  8   现场试验结果

    Figure  8.   Results of field tests

    图  9   土体压缩指数Ccm值关系

    Figure  9.   Relationship between compression index of soilCc and m value

    图  10   系数a, bY0关系

    Figure  10.   Relationship among coefficient a, b andY0

    图  11   m值拟合关系式修正

    Figure  11.   Correction of modified formula for m value

    图  12   m值拟合关系式验证

    Figure  12.   Verification of modified formula for m value

    表  1   沿线主要软土亚类划分

    Table  1   Classification of main soft soil subclasses along line

    材料编号压缩系数av/MPa-1压缩指数Cc压缩参数λ回弹参数k
    Mat10.2800.1020.0440.0044
    Mat20.4550.1580.0690.0069
    Mat30.6300.2140.0930.0093
    Mat40.8050.2700.1170.0117
    Mat50.9800.3260.1420.0142
    Mat61.1550.3810.1660.0166
    Mat71.3300.4370.1900.0190
    Mat81.5050.4930.2140.0214
    Mat91.6800.5490.2390.0239
    Mat101.8550.6050.2630.0263
    Mat112.0300.6610.2870.0287
    下载: 导出CSV

    表  2   修正剑桥模型参数(软土)

    Table  2   Material parameters for MCC (soft soil)

    材料重度γ /(kN·m-3)初始孔隙比e0CSL斜率M压缩参数λ
    黏土18.51.070.5660.044~0.287
    下载: 导出CSV

    表  3   中砂与桩基物理力学参数

    Table  3   Physico-mechanical parameters of medium sand and pile foundation

    材料重度γ /(kN·m-3)模量E/MPa泊松比ν摩擦角φ /(°)
    中砂20.5360.2535
    桩基24.0300000.20
    下载: 导出CSV

    表  4   桩顶水平位移系数vy取值

    Table  4   Values of coefficient of horizontal displacement of pile topvy

    αh≥4.03.53.02.82.62.4
    vy 2.4412.5022.7272.9053.1633.526
    下载: 导出CSV
  • [1] 姚文娟, 吴怀睿, 程泽坤, 等. 基于p-y曲线法的超长桩非线性数值分析[J]. 岩土工程学报, 2011, 33(11): 1683-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111009.htm

    YAO Wen-juan, WU Huai-rui, CHENG Ze-kun, et al. Nonlinear numerical analysis of super-long piles based on p-y curves[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1683-1690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111009.htm

    [2]

    RAO S N, RAMAKRISHNA V G S T, RAO M B. Influence of rigidity on laterally loaded pile groups in marine clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 542-549. doi: 10.1061/(ASCE)1090-0241(1998)124:6(542)

    [3]

    LI Wei, CHEN Fa-bo, XU Xue-yong, et al. Comparative study of pile-soil interaction analysis methods[J]. Applied Mechanics and Materials, 2012, 170/171/172/173: 246-251.

    [4]

    WANG J P, SU J B, WU F, et al. Lateral dynamic load tests of offshore piles based using the m-method[J]. Ocean Engineering, 2021, 220: 108413. doi: 10.1016/j.oceaneng.2020.108413

    [5] 刘陕南, 侯胜男, 蔡忠祥. m法计算单桩水平承载力在上海地区的适用性分析[J]. 岩土工程学报, 2013, 35(增刊2): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2132.htm

    LIU Shan-nan, HOU Sheng-nan, CAI Zhong-xiang. Applicability of m-method for horizontal bearing capacity of single pile in Shanghai area[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 721-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2132.htm

    [6] 戴自航, 陈林靖. 多层地基中水平荷载桩计算m法的两种数值解[J]. 岩土工程学报, 2007, 29(5): 690-696. doi: 10.3321/j.issn:1000-4548.2007.05.010

    DAI Zi-hang, CHEN Lin-jing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 690-696. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.010

    [7] 劳伟康, 周治国, 周立运. 水平推力桩在大位移情况下m值的确定[J]. 岩土力学, 2008, 29(1): 192-196. doi: 10.3969/j.issn.1000-7598.2008.01.036

    LAO Wei-kang, ZHOU Zhi-guo, ZHOU Li-yun. Analysis of m value for lateral loaded pile under large deflection[J]. Rock and Soil Mechanics, 2008, 29(1): 192-196. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.036

    [8] 吴锋, 时蓓玲, 卓杨. 水平受荷桩非线性m法研究[J]. 岩土工程学报, 2009, 31(9): 1398-1401. doi: 10.3321/j.issn:1000-4548.2009.09.012

    WU Feng, SHI Bei-ling, ZHUO Yang. Nonlinear m method for piles under lateral load[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1398-1401. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.012

    [9] 戴自航, 王云凤, 卢才金. 水平荷载单桩计算的综合刚度和双参数法杆系有限元数值解[J]. 岩石力学与工程学报, 2016, 35(10): 2115-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610018.htm

    DAI Zi-hang, WANG Yun-feng, LU Cai-jin. Numerical solution of link finite element based on composite stiffness and bi-parameter method for computation of laterally loaded single pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2115-2123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610018.htm

    [10] 邓涛, 林聪煜, 柳志鹏, 等. 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.

    DENG Tao, LIN Cong-yu, LIU Zhi-peng, et al. A simplified elastoplastic method for laterally loaded single pile with large displacement[J]. Rock and Soil Mechanics, 2020, 41(1): 95-102. (in Chinese)

    [11]

    YU G M, GONG W M, LIU Y C, et al. Lateral capacity of pile with grouted upper soil: field test and numerical simulation[J]. Innovative Infrastructure Solutions, 2017, 3(1): 1-9.

    [12] 冯君, 张俊云, 朱明, 等. 软土地层高承台桥梁群桩基础横向承载特性研究[J]. 岩土力学, 2016, 37(增刊2): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2011.htm

    FENG Jun, ZHANG Jun-yun, ZHU Ming, et al. Characteristic study of horizontal bearing capacity and pile group effect coefficient of laterally loaded high pile group foundation for bridge in soft soil[J]. Rock and Soil Mechanics, 2016, 37(S2): 94-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2011.htm

    [13]

    KARTHIGEYAN S, RAMAKRISHNA V V G S T, RAJAGOPAL K. Influence of vertical load on the lateral response of piles in sand[J]. Computers and Geotechnics, 2006, 33(2): 121-131. doi: 10.1016/j.compgeo.2005.12.002

    [14]

    KIM Y, JEONG S. Analysis of soil resistance on laterally loaded piles based on 3D soil-pile interaction[J]. Computers and Geotechnics, 2011, 38(2): 248-257. doi: 10.1016/j.compgeo.2010.12.001

    [15] 陈建峰, 孙红, 石振明, 等. 修正剑桥渗流耦合模型参数的估计[J]. 同济大学学报(自然科学版), 2003, 31(5): 544-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200305008.htm

    CHEN Jian-feng, SUN Hong, SHI Zhen-ming, et al. Estimation of parameters of modified cam-clay model coupling Biot theory[J]. Journal of Tongji University, 2003, 31(5): 544-548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200305008.htm

    [16] 铁路工程基桩检测技术规程:TB 10218—2008[S]. 2008.

    Technical Specification for Testing of Railway Piles: TB 10218—2008[S]. 2008. (in Chinese)

    [17] 铁路桥涵地基和基础设计规范:TB 10093—2017[S]. 2017.

    Code for Design on Subsoil and Foundation of Railway Bridge and Culvert: TB 10093—2017[S]. 2017. (in Chinese)

图(12)  /  表(4)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  14
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回