• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

被动围压条件下砂土动态压缩特性试验研究

张高, 李亮, 姜锡权, 栾贻恒

张高, 李亮, 姜锡权, 栾贻恒. 被动围压条件下砂土动态压缩特性试验研究[J]. 岩土工程学报, 2021, 43(S2): 184-188. DOI: 10.11779/CJGE2021S2044
引用本文: 张高, 李亮, 姜锡权, 栾贻恒. 被动围压条件下砂土动态压缩特性试验研究[J]. 岩土工程学报, 2021, 43(S2): 184-188. DOI: 10.11779/CJGE2021S2044
ZHANG Gao, LI Liang, JIANG Xi-quan, LUAN Yi-heng. Experimental study on dynamic compressive behaviors of sandy soil under passive confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 184-188. DOI: 10.11779/CJGE2021S2044
Citation: ZHANG Gao, LI Liang, JIANG Xi-quan, LUAN Yi-heng. Experimental study on dynamic compressive behaviors of sandy soil under passive confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 184-188. DOI: 10.11779/CJGE2021S2044

被动围压条件下砂土动态压缩特性试验研究  English Version

详细信息
    作者简介:

    张高(1996— ),男,硕士。主要从事砂土动力特性试验研究。E-mail:519804084@qq.com

    通讯作者:

    李亮, E-mail:liliang@bjut.edu.cn

  • 中图分类号: TU43

Experimental study on dynamic compressive behaviors of sandy soil under passive confining pressures

  • 摘要: 应用直径为50 mm的分离式霍普金森压杆(SHPB)试验装置开展了被动围压条件下砂土试样的动态压缩试验,研究了具有不同相对密实度以及不同含水率的试样在中高应变率条件下的动力响应特性,并研究了密实度状态和含水率对砂土试样的动态压缩特性的影响。试验结果表明:①动态压缩条件下砂土的动力响应表现出明显的应变率效应。对于干砂试样,随着应变率的增大其峰值应力呈现出逐渐升高的趋势。对含水的湿砂试样,随着应变率的增大其峰值应力呈现出先升高后降低的趋势。随着应变率的增大,干砂和湿砂试样的峰值应变均呈现先增大后减小的趋势。②砂土试样的密实度状态对其动态压缩特性具有较为显著的影响。随着相对密实度的增大,试样的峰值应力和对应的峰值应变均呈现上升的趋势。③砂土试样的含水率对其动态压缩特性具有一定程度的影响。随着含水率的增大,试样的峰值应力和对应的峰值应变呈现先增大后减小的趋势。存在一个含水率的界限值,在该界限值的两侧峰值应力和峰值应变随含水率的变化呈现不同的趋势。此试验条件下,对于相对密实度为0.9的砂样,该含水率的界限值为6%。
    Abstract: The dynamic compressive experiments on sands pecimens under passive confining pressures are carried out using a 50 mm split Hopkinson pressure bar. The dynamic response behaviors of sands with different relative densities and water content at medium high strain rates are investigated. The effects of the relative density and water content on the dynamic compressive behaviors of sand are also studied. It is indicated by the test results that: (1) The dynamic response of sands under the dynamic compressive action shows obvious strain rate effect. The peak stress of dry sand increases with the increase of strain rate, and the peak stress of wet sand first increases and then decreases with the increase of strain rate. The peak strain of dry and wet sands first increase and then decrease with the increase of strain rate. (2) The density of sand has an important effect on its dynamic compressive behaviors. The peak stress and peak strain of sand increase with the increase of relative density. (3) The water content of sand can impact its dynamic compressive properties in a certain extent. The peak stress and strain first increase and then decrease with the increase of water content. There is a dividing water content and the varying trend of the peak stress and strain are different when the water content is larger or less than the dividing water content. For the tests performed in the current study, the dividing water content is 6% for the sand specimens with the relative density of 0.9.
  • 图  1   SHPB装置组成示意图

    Figure  1.   Components of SHPB device

    图  2   装样套筒及附属垫块和底座

    Figure  2.   Sampling sleeve and bearing block and base

    图  3   装样步骤

    Figure  3.   Steps of specimen fixing

    图  4   不同应变率条件下砂样应力-应变曲线对比

    Figure  4.   Comparison of stress-strain curves of sand specimens at different strain rates

    图  5   不同相对密实度的砂样动力响应随应变率的变化

    Figure  5.   Dynamic response vs. strain rate for sand specimens with different relative densities

    图  6   不同应变率条件下砂样动力响应随含水率的变化

    Figure  6.   Dynamic response vs. water content for sand specimens at different strain rates

    表  1   试验砂样的物理参数

    Table  1   Physical parameters of test sand specimens

    Gsρdmax /(g·cm-3)ρdmin /(g·cm-3)d50/mm
    2.61.7551.6001.4
    注:Gs为相对质量密度,ρdmax为最大干密度,ρdmin为最小干密度,d50为中值粒径。
    下载: 导出CSV

    表  2   试验加载工况

    Table  2   Loading cases of tests

    组号含水率w/%相对密实度Dr冲击速度v/(m·s-1)
    1组00.16、7,9,11,12.5
    0.5
    0.9
    2组2,4,6,8,100.96,7,9,11,12.5
    下载: 导出CSV
  • [1] 卢芳云, 陈荣, 林玉亮. 霍普金森杆实验技术[M]. 北京: 科学出版社, 2013.

    LU Fang-yun, CHEN Rong, LIN Yu-liang. Hopkinson bar techniques[M]. Beijing: Science Press, 2013. (in Chinese)

    [2]

    FELICE C W, GAFFNEY S, BROWN J A. Extended split-Hopkinson bar analysis for attenuating materials[J]. Journal of Engineering Mechanics, 1991, 117(5): 1119-1135. doi: 10.1061/(ASCE)0733-9399(1991)117:5(1119)

    [3]

    SONG B, CHEN W N, LUK V. Impact compressive response of dry sand[J]. Mechanics of Materials, 2009, 41(6): 777-785. doi: 10.1016/j.mechmat.2009.01.003

    [4]

    LU H B, LUO H Y, COOPER W L, et al. Effect of particle size on the compressive behavior of dry sand under confinement at high strain rates[C]//Dynamic Behavior of Materials, Volume 1, 2013. doi: 10.1007/978-1-4614-4238-7_67.

    [5] 朱志武, 宁建国, 刘煦. 冲击载荷下土的动态力学性能研究[J]. 高压物理学报, 2011, 25(5): 444-450. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201105011.htm

    ZHU Zhi-wu, NING Jian-guo, LIU Xu. Dynamic mechanical behaviors of soil under impact loads[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 444-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201105011.htm

    [6] 吕亚茹, 王明洋, 魏久淇, 等. 钙质砂的SHPB实验技术及其动态力学性能[J]. 爆炸与冲击, 2018, 38(6): 1262-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201806009.htm

    LYU Ya-ru, WANG Ming-yang, WEI Jiu-qi, et al. Experimental techniques of SHPB for calcareous sand and its dynamic behaviors[J]. Explosion and Shock Waves, 2018, 38(6): 1262-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201806009.htm

    [7] 郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能[J]. 爆炸与冲击, 2011, 31(6): 619-623. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201106011.htm

    ZHENG Wen, XU Song-lin, HU Shi-sheng. Dynamic mechanical properties of dry sand under confined compression[J]. Explosion and Shock Waves, 2011, 31(6): 619-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201106011.htm

    [8]

    DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155-179. doi: 10.1016/0022-5096(63)90050-4

    [9]

    SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics, 2004, 44(3): 300-312. doi: 10.1007/BF02427897

图(6)  /  表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  25
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回