Behaviors of supporting structures of asymmetrically loaded deep excavation in hard soil layer
-
摘要: 依托宁句城际轨道句容站基坑工程,通过现场监测和数值模拟方法,探究了硬质地层中偏压荷载对基坑围护桩桩身水平位移和桩身弯矩的影响规律。结果表明:硬质地层中偏压基坑两侧围护桩均向基坑内侧变形,偏压荷载在增加偏压侧桩身位移的同时抑制非偏压侧的桩身位移;偏压侧围护桩的最大水平位移出现在桩顶处,其随偏压距离与开挖深度比值减小而成指数增加;偏压距离小于基坑开挖深度时,偏压荷载对偏压侧桩身变形影响显著;偏压荷载使偏压侧围护桩桩身峰值弯矩显著增加,但对非偏压侧桩身弯矩几乎无影响;偏压基坑设计应对偏压侧围护结构进行增强以控制工程风险。Abstract: Based on the excavation at Jurong Station of Nanjing-Jurong Intercity Railroad, the stress and deformation characteristics of the supporting structures during the construction of the asymmetrically-loaded excavation in hard soil layer are investigated through the in-site monitoring and numerical simulation methods. The results show that the retaining piles of the asymmetrically-loaded excavation in the hard soil at both sides are deformed to the inner side of the excavation, and the asymmetrical-load increases the displacement of the loading-side piles meanwhile suppresses the displacement of the unloading-side piles. The maximum horizontal displacement of the piles at the loading-side appears at the pile top, which increases exponentially with the decrease of the ratio of the distance of load to the depth of the excavation. When the loading distance is less than the depth of the excavation, the load has a significant effect on the deformation of the loading-side piles. The existence of the load significantly increases the peak bending moment of the loading-side retaining piles, but has almost no effect on the bending moment of unloading-side piles. In order to control the risks of excavation, the retaining piles at the loading side of excavation in the hard soil should be enhanced.
-
0. 引言
膨润土是一种以蒙脱石为主要矿物成分的层状硅铝酸盐矿物,遇水膨胀,具有良好的吸附性和造浆性,被广泛应用于软土地基处理及建设工程当中[1-3]。膨润土泥浆主要可分为钠基膨润土泥浆和钙基膨润土泥浆,膨润土泥浆中的钠离子的离子交换能力远高于钙离子[4],钠基膨润土泥浆具有更高的吸附性、触变性和胶凝性,更适用于工程的应用。
在顶管工程当中,管体侧壁与土体之间会生成较大的摩阻力,故需要注浆以降低管壁侧摩阻力,提高施工效率[5-7]。膨润土泥浆经搅拌后形成悬浮液,当浆液注入土层中的超挖间隙,其是具有黏性和流动性的胶体,使得管体侧壁的摩擦转化为湿摩擦[8];当渗入土层的浆液不再运动时,浆液又会发生絮凝,形成凝胶体,起到支撑作用[9]。由于膨润土泥浆的流变性和触变性,能充分发挥其在顶管施工过程中润滑和支撑的作用。顶管施工过程中膨润土泥浆注入土层后,先与周围土体发生渗透形成稳定的泥浆套后,再填补管体与土体之间的空隙。滤失量通常作为一项重要指标反映浆体形成泥饼形成的质量,滤失量越大则泥饼越厚且疏松,滤失量越小则泥饼的形态越薄且致密。低滤失量的泥浆在顶管工程中所形成的泥浆套不透水性更好,结构致密强度高,能够有效阻止地下水的侵入和泥浆的失水和渗透作用。泥浆良好的流动性有利于泥浆的泵送和流动,能够有效降低管壁的摩阻力,提高施工效率。漏斗黏度作为一项简单易测的指标,虽然不能反映泥浆的流变特性,但可反映泥浆的流动性,通常在施工现场作为一种便捷的泥浆控制指标。
膨润土泥浆通常是由膨润土、水和添加剂按一定比例配置而成的,顶管施工中的膨润土泥浆通常选用纯碱和聚合物组合的方式来提高浆液的性能[10,11]。本文探究了羧甲基纤维素钠(CMC),聚丙烯酰胺(PAM)和瓜尔胶三种聚合物在不同膨润土和纯碱用量下对泥浆工程特性的影响,并提出了相应的预测公式,在此基础之上进行关联度分析,为工程应用中泥浆的制备提供参考。
1. 聚合物改性膨润土泥浆的制备
膨润土中的主要矿物成分为蒙脱石,蒙脱石的微观结构是由中间夹有一层铝氧八面体,上下两层各为硅氧四面体组成的三层片状结构,属于典型的2∶1型单斜晶细结构,具有较高的离子交换能力、吸附能力[4,12]。本文所选用膨润土的主要矿物成分:高岭石为0.2%,伊利石为16.1%,绿泥石为0.4%,蒙脱石含量达到83.3%。
顶管工程中膨润土改性泥浆中的添加剂主要分为两类,一类为纯碱,能增强泥浆中离子交换作用,使得晶体结构带负电产生斥力,增强膨润土的分散效应,提高悬浮性;另一类为聚合物,能通过其自身的分子链吸附在膨润土晶体结构的表面,进而形成立体网状结构,提高泥浆工程特性。试验分别设置纯膨润土泥浆(A组)、纯碱膨润土泥浆(B组)、纯碱CMC膨润土泥浆(C组)、纯碱PAM膨润土泥浆(D组)和纯碱瓜尔胶膨润土泥浆(E组)进行对比分析研究,具体组别参见表1~5。其中,水的用量各组试验均选用1000 g的水进行泥浆的配置,纯碱的用量使泥浆中的纯碱浓度分别为0.4,0.8 mol/L。
表 1 纯膨润土泥浆试验分组Table 1. Grouping of bentonite slurry组别 水/g 纯碱/(mol·L-1) 膨润土/g A1 1000 0 50 A2 75 A3 100 A4 150 表 2 纯碱膨润土泥浆试验分组Table 2. Grouping of bentonite slurry with sodium carbonate组别 水/g 纯碱/(mol·L-1) 膨润土/g B1 1000 0.4 50 B2 75 B3 100 B4 150 B5 0.8 50 B6 75 B7 100 B8 75 表 3 纯碱CMC膨润土泥浆试验分组Table 3. Grouping of bentonite slurry with sodium carbonate and CMC组别 水/g 膨润土/g 纯碱/(mol·L-1) CMC/g C1 50 0.4 2 C2 3 C3 4 C4 5 C5 75 0.8 1 C6 1000 2 C7 3 C8 4 C9 100 0.8 1 C10 2 C11 3 C12 4 表 4 纯碱PAM膨润土泥浆试验分组Table 4. Grouping of bentonite slurry with sodium carbonate and PAM组别 水/g 膨润土/g 纯碱/(mol·L-1) PAM/g D1 50 0.4 1 D2 1.5 D3 2 D4 1000 75 0.8 1 D5 1.5 D6 2 D7 100 0.8 1 D8 1.5 D9 2 表 5 纯碱瓜尔胶膨润土泥浆试验分组Table 5. Grouping of bentonite slurry with sodium carbonate and guar gum组别 水/g 膨润土/g 纯碱/(mol·L-1) 瓜尔胶/g E1 1000 75 0.4 0.2 E2 0.3 E3 0.4 E4 100 0.4 0.1 E5 0.2 E6 0.3 E7 150 0.8 0.1 E8 0.2 E9 0.3 在相同室温(20℃)、搅拌速率(1000 r/min)和搅拌时间(1 h)条件下,泥浆配置完成后静置30 min,再进行漏斗黏度和滤失量的测试。漏斗黏度采用漏斗黏度计进行测量,将700 mL浆液放入锥形漏斗当中,记录其流出500 mL泥浆所需的时间,即为漏斗黏度,通常建议取值范围为25~45 s[8]。滤失量可由中压滤失仪进行测量,在0.69 MPa的压力下,记录30 min通过滤失仪所渗出的液体量,即为滤失量,通常滤失量不宜超过25 mL[13]。
2. 泥浆的配比优化分析
由于现场施工条件复杂,目前难以形成统一的泥浆配比方案。基于实际工程对泥浆特性的基本要求,开展了膨润土改性泥浆各主要成分用量与泥浆特性的量化分析,提出了相应的优化计算公式,为工程的泥浆应用选取提供了参考。
A组是纯膨润土泥浆的试验组,其试验结果如图1所示,给出了膨润土含量为50,75,100,150 g的泥浆滤失量和漏斗黏度值,其拟合回归曲线为
yo1=12.57+47.28e−0.01x (滤失量), (1) yo2=15+0.88x0.43 (漏斗黏度)。 (2) B组试验是在膨润土泥浆中加入了纯碱,其试验结果如表6所示。为了更清晰地反映纯碱与泥浆特性间的联系,引入滤失量比
η1 和漏斗黏度比λ1 分别来表示纯碱添加量与泥浆滤失量和漏斗黏度的影响:η1=Vn/Vo, (3) λ1=Fn/Vo。 (4) 表 6 纯碱膨润土泥浆试验结果Table 6. Results of bentonite slurry with sodium carbonate指标 B1 B2 B3 B4 B5 B6 B7 B8 滤失量/(m·L-1) 47.8 38.6 31.5 24 49.7 40.2 32.4 24.6 漏斗黏度/s 19.5 20.4 21 23 18.5 19.3 19.9 21.8 式中
Vn 和Fn 为添加纯碱后的滤失量和漏斗黏度;Vo 和Fo 为纯膨润土泥浆的滤失量和漏斗黏度。滤失量比η1 和漏斗黏度比λ1 与纯碱浓度x1 之间的关系(见图2)可表示为η1=1.33−0.33e−x10.22 (滤失量比) (5) λ1=0.92+0.08e−x10.47 (漏斗黏度比) (6) C组、D组、E组探究了聚合物添加量与泥浆特性之间的关系,如表7~9所示,聚合物的添加能显著提高泥浆漏斗黏度,降低滤失量。CMC在降低滤失量方面更为突出,PAM则在提高漏斗黏度方面更为出色,而瓜尔胶能在较少的添加量下,明显提升泥浆的工程特性。这里再引入滤失量比
η2 和漏斗黏度比λ2 分别来表示聚合物添加量与泥浆的滤失量和漏斗黏度的影响,其表达式可表示为η2=Va/Vn, (7) λ2=Fa/Fn, (8) 表 7 纯碱CMC膨润土泥浆试验结果Table 7. Results of bentonite slurry with sodium carbonate and CMC指标 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 滤失量/(m·L-1) 10.6 9.6 9.1 8.4 12.2 9 8.1 7.4 11.7 7.9 7 6 漏斗黏度/s 24.2 28.1 42.9 70.2 21.6 25.1 34.2 58.3 24.9 35.6 56.3 438.5 表 8 纯碱PAM膨润土泥浆试验结果Table 8. Results of bentonite slurry with sodium carbonate and PAM指标 D1 D2 D3 D4 D5 D6 D7 D8 D9 滤失量/(m·L-1) 14.3 13.7 11.8 13.6 12.3 10.9 12.2 11.8 10.2 漏斗黏度/s 33.3 36.9 39.1 34.5 38.4 41.3 35.4 40 42.9 表 9 纯碱瓜尔胶膨润土泥浆试验结果Table 9. Results of bentonite slurry with sodium carbonate and guar gum指标 E1 E2 E3 E4 E5 E6 E7 E8 E9 滤失量/(m·L-1) 32.6 31.9 31.1 26.1 25.3 24.4 20 19.6 18.8 漏斗黏度/s 24.2 27.8 35.2 24 27.8 38.4 32.4 35.9 51.6 式中,
Va 和Fa 为添加聚合物和纯碱后的泥浆滤失量和漏斗黏度。图3~5分别给出了CMC、PAM和瓜尔胶3种聚合添加量与泥浆液滤失量比和漏斗黏度比的关系曲线,其曲线关系可分别表示为
滤失量比:
η2={0.20+0.80e−1.69x2 (CMC)0.29+0.71e−2.47x2 (PAM)0.81+0.19e−23.77x2 (瓜尔胶), (9) 漏斗黏度比:
λ2={1+0.04x2+0.10x22 (CMC)1+0.79x0.522 (PAM)1+2.69x2−1.84x22 (瓜尔胶)。 (10) 综上所述,聚合物改性膨润土的滤失量
y1 和漏斗黏度y2 可用纯膨润土泥浆的指标yo1 ,yo2 与滤失量比(η1 ,η2 )和漏斗黏度比(λ1 ,λ2 )的乘积表示:y1=η1⋅η2⋅yo1 (滤失量), (11) y2=λ1⋅λ2⋅yo2 (漏斗黏度)。 (12) 3. 聚合物的关联性分析
为了更清晰地分析聚合物与泥浆特性之间的关系,选用漏斗黏度比
η2 和滤失量比λ2 来表示聚合物添加量与泥浆漏斗黏度和滤失量的影响,采用关联度分析法以量化分析各聚合物对泥浆特性的影响。根据表3~5中的膨润土用量和纯碱浓度关系,每种聚合物都可分为3个组别进行分析计算,将每25 g膨润土中的聚合物含量、漏斗黏度比
η2 和滤失量比λ2 作为分析变量。采用绝对灰关联度分析其间关联性,可按下式计算[14]:ε(X0, Xi)=1n(n−1∑k=1|1+(x0(k+1)−x0(k))(xi(k+1)−xi(k))√1+(x0(k+1)−x0(k))2√1+(xi(k+1)−xi(k))2|+1)。 (13) 式中
X0 为25 g膨润土中的聚合物相对含量;X1 为泥浆漏斗黏度比η2 ;X2 为泥浆滤失量比λ2 。表10给出了关联度的计算结果,各种聚合物与黏度和滤失量的关联程度整体较高,说明了聚合物的添加对泥浆的黏度和滤失量造成显著影响。值得注意的是,C9-C12和E7-E9中的漏斗黏度关联度偏小的原因,主要是因为C12和E9中的漏斗黏度急速升高所导致的数据关联性减弱。整体上,随着膨润土添加量的增大,PAM和瓜尔胶的泥浆漏斗黏度比呈下降趋势,而CMC与此相反,说明膨润土的增加,能够增大泥浆漏斗黏度,且CMC能更好的与膨润土共同作用增加泥浆漏斗黏度。同时,随着膨润土添加量的增大,泥浆滤失量黏度比均呈上升趋势,说明各种聚合物对泥浆滤失量的作用均受到了泥浆中膨润土的含量的影响。
表 10 绝对灰色关联度计算结果Table 10. Results of absolute degrees of gray incidence carbonate and guar gum高聚物 组别 漏斗黏度比关联度 滤失量比关联度 CMC C1-C4 0.9286 0.8666 C5-C8 0.9604 0.8812 C9-C12 0.8218 0.9095 PAM D1-D3 0.9927 0.8517 D4-D6 0.9846 0.8955 D7-D9 0.9772 0.9176 瓜尔胶 E1-E3 0.9808 0.9938 E4-E6 0.9683 0.9946 E7-E9 0.8211 0.9988 4. 结论
本文通过室内试验对CMC、PAM和瓜尔胶3种聚合物对膨润土泥浆滤失量和漏斗黏度的影响进行了分析研究,主要得到以下3点结论。
(1)展开了不同聚合物对泥浆漏斗黏度和滤失量影响的量化分析,得到了合理范围内的相应指标预测公式,以方便实际工程应用中的选取。
(2)分析了不同聚合物添加量与漏斗黏度和滤失量间的关联性,聚合物的添加能够显著增大泥浆漏斗黏度并减小泥浆滤失量。
(3)膨润土含量更高的泥浆,其聚合物对泥浆工程特性的改善作用越为突出。其中,CMC能更好的与膨润土共同作用增加泥浆漏斗黏度,各种聚合物对泥浆滤失量的作用则均受到了泥浆中膨润土含量的影响。
-
表 1 土层计算参数
Table 1 Parameters of soil layers
土层 重度/(kN·m-3) 泊松比 κ λ M 粉质黏土 10 0.29 0.0258 0.14 1.0 强风化粉砂质泥岩 30 0.23 0.0186 0.11 1.1 中风化凝灰角砾岩 60 0.20 0.0042 0.04 1.3 破碎凝灰角砾岩 30 0.19 0.0078 0.06 1.2 表 2 支护结构计算参数
Table 2 Parameters of supporting structures
名称 材料 密度/(kg·m-3) 泊松比 弹性模量/GPa 围护桩 C20+C35混凝土 2400 0.20 28.8 砼支撑 C35混凝土 2400 0.20 31.5 钢支撑 Q235 7850 0.28 210.0 -
[1] 刘波, 席培胜, 章定文. 偏压作用下非等深基坑开挖效应数值分析[J]. 东南大学学报(自然科学版), 2016, 46(4): 853-859. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201604030.htm LIU Bo, XI Pei-sheng, ZHANG Ding-wen. Numerical analysis of excavation effect of unsymmetrical loaded foundation pit with different excavation depths[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(4): 853-859. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201604030.htm
[2] 林刚, 徐长节, 蔡袁强. 不平衡堆载作用下深基坑开挖支护结构性状研究[J]. 岩土力学, 2010, 31(8): 2592-2598. doi: 10.3969/j.issn.1000-7598.2010.08.041 LIN Gang, XU Chang-jie, CAI Yuan-qiang. Research on characters of retaining structures for deep foundation pit excavation under unbalanced heaped load[J]. Rock and Soil Mechanics, 2010, 31(8): 2592-2598. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.041
[3] XU C J, XU Y L, SUN H L, et al. Characteristics of braced excavation under asymmetrical loads[J]. Mathematical Problems in Engineering, 2013, 2013: 1-12.
[4] LIU B, ZHANG D W, XI P S. Influence of vehicle load mode on the response of an asymmetrically-loaded deep excavation[J]. KSCE Journal of Civil Engineering, 2019, 23(8): 3315-3329. doi: 10.1007/s12205-019-0511-6
[5] 姚爱军, 张新东. 不对称荷载对深基坑围护变形的影响[J]. 岩土力学, 2011, 32(增刊2): 378-382, 388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2063.htm YAO Ai-jun, ZHANG Xin-dong. Influence of asymmetric load on supporting deformation for deep foundation pit[J]. Rock and Soil Mechanics, 2011, 32(S2): 378-382, 388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2063.htm
[6] 刘波, 章定文, 席培胜. 偏压基坑工程设计、施工与受力变形特性研究进展[J]. 中国矿业大学学报, 2018, 47(4): 791-804. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804013.htm LIU Bo, ZHANG Ding-wen, XI Pei-sheng. Review on design, construction, stress and deformation characteristics of asymmetrically loaded deep excavation[J]. Journal of China University of Mining & Technology, 2018, 47(4): 791-804. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804013.htm
-
期刊类型引用(4)
1. 阳岢杙. 基于边载效应的平板载荷试验研究. 广东交通职业技术学院学报. 2025(02): 7-11 . 百度学术
2. 张海洋,魏东,李旭瑞. 掺黏粒改良粉土的土水特征试验研究. 路基工程. 2024(05): 102-108 . 百度学术
3. 雷先顺,李漪. 平板荷载试验中外标准应用对比. 科技资讯. 2022(21): 79-82 . 百度学术
4. 李沛云. 考虑边载因素的平板载荷试验分析及应用——以评价沙特麦麦高铁风化砂岩持力层地基承载力试验分析为例. 烟台职业学院学报. 2022(04): 105-109 . 百度学术
其他类型引用(4)