• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

复杂越流含水层基坑抽水引发围挡变形发展规律

王硕, 曾超峰, 薛秀丽, 李明广, 蔡钢

王硕, 曾超峰, 薛秀丽, 李明广, 蔡钢. 复杂越流含水层基坑抽水引发围挡变形发展规律[J]. 岩土工程学报, 2021, 43(S2): 125-128. DOI: 10.11779/CJGE2021S2030
引用本文: 王硕, 曾超峰, 薛秀丽, 李明广, 蔡钢. 复杂越流含水层基坑抽水引发围挡变形发展规律[J]. 岩土工程学报, 2021, 43(S2): 125-128. DOI: 10.11779/CJGE2021S2030
WANG Shuo, ZENG Chao-feng, XUE Xiu-li, LI Ming-guang, CAI Gang. Development of deformation of enclosure wall during dewatering in a leaky aquifer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 125-128. DOI: 10.11779/CJGE2021S2030
Citation: WANG Shuo, ZENG Chao-feng, XUE Xiu-li, LI Ming-guang, CAI Gang. Development of deformation of enclosure wall during dewatering in a leaky aquifer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 125-128. DOI: 10.11779/CJGE2021S2030

复杂越流含水层基坑抽水引发围挡变形发展规律  English Version

基金项目: 

国家自然科学基金项目 51978261

国家自然科学基金项目 51708206

湖南省自然科学基金项目 2020JJ5193

湖南省教育厅资助项目 20A190

详细信息
    作者简介:

    王硕(1997— ),男,硕士研究生,主要从事基坑地下水控制和地下水回灌控沉技术等方面的学习与研究。E-mail: 19020201028@mail.hnust.edu.cn

    通讯作者:

    曾超峰, E-mail: cfzeng@hnust.edu.cn

  • 中图分类号: TU433

Development of deformation of enclosure wall during dewatering in a leaky aquifer

  • 摘要: 依托某基坑开挖前抽水试验,利用ABAQUS建立有限元模型,探讨了复杂越流含水层中基坑抽水引发围挡变形的发展规律。研究发现:当基坑内外存在水力联系时,受弱透水层影响,基坑抽水过程中各土层围挡两侧孔压差值(ΔP)先增大后减小最后趋于稳定,从而导致基坑围挡发生同样规律的变形(即,增大后再减小最后趋于稳定)。而当基坑内外无水力联系时,基坑抽水导致的各土层围挡两侧孔压差值(ΔP)将单调增大并很快趋于稳定,此时,基坑围挡变形不再出现前述先增大后减小的规律,而同样表现出单调增大的规律。
    Abstract: The finite element model is established to investigate the development of deformation of enclosure wall during dewatering in a leaky aquifer by using ABAQUS on the basis of a practical pre-excavation dewatering test. The results show that when there is hydraulic connection between the inside and outside of a foundation pit, under the influences of an aquitard, the difference of pore pressure at both sides of enclosure wall (ΔP) increases first, then decreases, and finally tends to be stable during the pumping. As a result, the deformation of enclosure wall first increases, then decreases and finally becomes stable. However, when there is no hydraulic connection between the inside and outside of the foundation pit, ΔP increases monotonously and tends to be stable soon. The deformation of enclosure wall no longer first increases and then decreases, but increases monotonously.
  • 图  1   基坑平面及测点布置

    Figure  1.   Plan view of excavation and layout of instrumentation

    图  2   有限元模型网格图

    Figure  2.   Finite element mesh of model

    图  3   基坑内外水位变化实测值与计算值对比

    Figure  3.   Comparison between computed and measured water level drawdowns

    图  4   抽水结束后基坑北侧地连墙侧移实测与计算值对比

    Figure  4.   Comparison between computed and measured wall deformations at north side of foundation pit after pumping

    图  5   孔压特征点示意图

    Figure  5.   Layout of monitoring points for pore water pressure during numerical simulation

    图  6   坑内外水力连通下围挡两侧孔压差值随抽水时间变化

    Figure  6.   Time-history curves of ΔP of foundation pit hydraulically connected with outside

    图  7   坑内外水力连通下围挡不同深度侧移随抽水时间变化

    Figure  7.   Time-history curves of wall deformations at different depths of foundation pit hydraulically connected with outside

    图  8   坑内外无水力连通下围挡两侧孔压差值随抽水时间变化

    Figure  8.   Time-history curves of ΔP without hydraulic connection between inside and outside of foundation pit

    图  9   坑内外无水力连通下围挡不同深度侧移随抽水时间变化

    Figure  9.   Time-history curves of wall deformations at different depths without hydraulic connection between inside and outside of foundation pit

    表  1   土层分布及其物理力学参数

    Table  1   Soil distribution and its physical and mechanical parameters

    土层土性H/mγ/(kN·m-3)K0w/%eEs/MPac'/kPaφ'/(°)Kh/(m·d-1)Kv/(m·d-1)E/MPaVs/(m·s-1)
    Aq0粉黏1019.10.5830.40.857.417250.030.00343.5152
    AdІ粉黏1519.30.6128.70.816.818230.0250.00156.3172
    AqІ粉土1920.20.4421.70.6217.410340.20.1137.6266
    AdІІ粉黏2219.90.5625.10.71819260.0060.001118.6246
    AqІІ粉土24.520.40.4422.30.5514.68342.50.5151.8278
    粉土29.520.60.4120.90.5815.983610.2153.3278
    粉黏32.520.30.5623.60.668.6172610.16128253
    粉砂35.520.60.4016.30.5218.973730.6178.5300
    AdⅢ粉黏3720.50.5620.70.69.519260.020.004152.1274.5
    AqⅢ粉土4120.70.4418.20.5419.9103430.9214.5328
    AdⅣ粉黏4720.30.5522.10.6410.318270.00050.0001198.4315
    AqⅣ粉砂5020.60.3817.50.5325.37383.51.5257360
    注:H为层底埋深;γ为土的天然重度;K0为静止土压力系数;w为含水率;e为初始孔隙比;Es为压缩模量;c'为黏聚力;φ'为内摩擦角;Kh为水平渗透系数;Kv为竖向渗透系数;E为弹性模量;Vs为剪切波速。
    下载: 导出CSV
  • [1]

    ZENG C F, XUE X L, ZHENG G, et al. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system[J]. Journal of Hydrology, 2018, 559: 609-626. doi: 10.1016/j.jhydrol.2018.02.069

    [2] 江杰, 杨杉楠, 胡盛斌, 等. 预降水过程中止水帷幕缺陷对基坑变形的影响[J]. 广西大学学报(自然科学版), 2020, 45(5): 996-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202005004.htm

    JIANG Jie, YANG Shan-nan, HU Sheng-bin, et al. Influence of waterproof curtain defect on foundation pit deformation in pre-dewatering process[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(5): 996-1005. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202005004.htm

    [3] 王建秀, 郭太平, 吴林高, 等. 深基坑降水中墙-井作用机理及工程应用[J]. 地下空间与工程学报, 2010, 6(3): 564-570. doi: 10.3969/j.issn.1673-0836.2010.03.024

    WANG Jian-xiu, GUO Tai-ping, WU Lin-gao, et al. Mechanism and application of interaction between underground wall and well in dewatering for deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 564-570. (in Chinese) doi: 10.3969/j.issn.1673-0836.2010.03.024

    [4]

    WANG X W, YANG T L, XU Y S, et al. Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering[J]. Journal of Hydrology, 2019, 577: 123969. doi: 10.1016/j.jhydrol.2019.123969

  • 期刊类型引用(7)

    1. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    2. 许宇,李兴高,杨益,牟举文,苏伟林. 盾构切刀切削混凝土过程中的动态响应试验. 哈尔滨工业大学学报. 2021(05): 182-189 . 百度学术
    3. 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟. 浙江大学学报(工学版). 2020(06): 1106-1114 . 百度学术
    4. 魏世广,蒋敏敏,肖昭然,周长明. 竖向荷载作用下盾构开挖引起的桩身竖向响应分析. 三峡大学学报(自然科学版). 2020(06): 68-72 . 百度学术
    5. 王渭,蒋云鹏. 不同条件下顶管法施工对下穿隧道的作用特性研究. 交通世界. 2019(15): 122-123 . 百度学术
    6. 黄启舒,孟庆生. 公路隧道下穿既有桥梁的施工影响及工程措施研究. 公路与汽运. 2019(05): 144-146 . 百度学术
    7. 郭力,李太杰. 城市桥梁桩基施工对既有盾构隧道的影响研究. 公路工程. 2019(05): 118-122+187 . 百度学术

    其他类型引用(14)

图(9)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 21
出版历程
  • 收稿日期:  2021-08-17
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回