Mechanism of bearing capacity of vertical anchor plates in sand considering interface friction based on DEM method
-
摘要: 为明确锚定板拉拔造成的土体内部剪切带的形成机制与演化机理,基于离散元方法,采用FLAC-PFC2D耦合计算程序建立了相应的颗粒流数值模型。研究了锚定板埋深、锚定板-砂土界面摩擦系数对锚定板受拉过程中的抗拔力-位移曲线、板周土体位移场的影响,分析了拉拔过程中的力链变化。结果表明:随着锚定板的埋深增大,锚板在土体中的极限抗拔力随之增大,且土体破坏模式在埋深比为8左右时由整体剪切破坏逐渐转化为局部破坏。通过对锚定板被动区、模型整体的力链分析,进一步明确了竖向条形锚定板受拉过程中的锚定板存在对周围土体承受水平荷载的调动作用细观机理。Abstract: In order to clarify the mechanism of formation and evolution of the shear zone of soils near the anchor plate, based on the discrete element method, a particle flow code model by coupling FLAC-PFC2D is established. The effects of embedment depth of the anchor plate and friction coefficient of anchor plate-sand soil interface on the pullout force- displacement curve, soil displacement around the plate and the trend of force chain development in the model during the process of pullout are investigated. The results show that the ultimate pullout force of the anchor plate increases as the embedment ratio of the anchor plate in the soils increases, and the failure mode of the soils gradually changes from the general failure mode to the local one when the embedment depth ratio is about 8. Through the force chain analysis of the whole model and passive zone, the mobilization effects of the anchor plate during pullout process of the vertical strip anchor on the surrounding soils subjected are further clarified.
-
-
表 1 直剪试验模型的细观接触参数
Table 1 Contact parameters of direct shear tests
颗粒性质/接触类型 kn ks μ cb_tenf cb_shearf wall 3.0×107 3.0×108 0 — — ball 2.5×107 1.0×108 0.95 — — ball-ball 1.6×107 5.0×106 0.95 3.0×105 1.0×105 表 2 各工况下的极限承载力与破坏模式
Table 2 Peak resistances and failure modes
摩擦系数 μ' 埋深比(H/h) 极限承载力/N 破坏模式 0.5 2 2169.9 整体剪切 4 3249.5 整体剪切 6 5721.6 整体剪切 8 7181.3 局部破坏 1 2 2276.9 整体剪切 4 3633.2 整体剪切 6 5763.8 整体剪切 8 8025.9 过渡模式 -
[1] DASH S K, CHOUDHARY A K. Pullout behavior of geocell-reinforced vertical plate anchors under lateral loading[J]. International Journal of Geomechanics, 2019, 19(8): 04019082. doi: 10.1061/(ASCE)GM.1943-5622.0001452
[2] 蔡正银, 侯伟, 关云飞. 遮帘式板桩码头的工作机理[J]. 岩土工程学报, 2015, 37(10): 1745-1750. doi: 10.11779/CJGE201510001 CAI Zheng-yin, HOU Wei, GUAN Yun-fei. Mechanism of sheet-pile wharf with barrier piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1745-1750. (in Chinese) doi: 10.11779/CJGE201510001
[3] 厉超, 郝伟. 压力分散型悬锚式挡墙位移及受力特性分析[J]. 北方交通, 2015(9): 36-39. doi: 10.15996/j.cnki.bfjt.2015.09.011 LI Chao, HAO Wei. Analysis of pressure-dispersed anchored cantilever retaining wall's displacement and stress[J]. Northern Communications, 2015(9): 36-39. (in Chinese) doi: 10.15996/j.cnki.bfjt.2015.09.011
[4] 吴建清, 宋修广, 厉超, 等. 压力分散型挡土墙在施工期和运营期的受力特性分析[J]. 公路, 2014, 59(6): 36-40. doi: 10.3969/j.issn.1671-7619.2014.06.011 WU Jian-qing, SONG Xiu-guang, LI Chao, et al. Analysis of mechanical properties for dispersed pressure retaining wall during construction and operations[J]. Highway, 2014, 59(6): 36-40. (in Chinese) doi: 10.3969/j.issn.1671-7619.2014.06.011
[5] 薛志超, 宋修广, 陈宝强, 等. 压力分散型挡土墙支护高填土路基施工过程的受力特征[J]. 公路交通科技, 2013, 30(4): 11-16. doi: 10.3969/j.issn.1002-0268.2013.04.003 XUE Zhi-chao, SONG Xiu-guang, CHEN Bao-qiang, et al. Stress characteristics of pressure dispersive retaining wall for supporting high-filling embankment during construction[J]. Journal of Highway and Transportation Research and Development, 2013, 30(4): 11-16. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.04.003
[6] 中交第二公路勘察设计研究院有限公司. 公路挡土墙设计与施工技术细则[M]. 北京: 人民交通出版社, 2008. CCCC Second Highway Engineering Co Ltd. Technical Guidelines for Design and Construction of Highway Retaining Walls[M]. Beijing: China Communications Press, 2008. (in Chinese)
[7] 岳红亚. 基于PIV技术的浅埋锚定板和管道抗拔破坏机理及计算理论研究[D]. 济南: 山东大学, 2020. YUE Hong-ya. Research of Pullout Failure Mechanism and Computational Method of Shallow Plate Anchors and Pipelines Based on PIV Technology[D]. Jinan: Shandong University, 2020. (in Chinese)
[8] GIAMPA J R, BRADSHAW A S, GERKUS H, et al. The effect of shape on the pull-out capacity of shallow plate anchors in sand[J]. Géotechnique, 2019, 69(4): 355-363. doi: 10.1680/jgeot.17.P.269
[9] 胡伟, 刘顺凯, 邹贵华, 等. 竖向条形锚定板水平拉拔极限承载力统一理论解研究[J]. 岩土工程学报, 2018, 40(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802012.htm HU Wei, LIU Shun-kai, ZOU Gui-hua, et al. Unified theoretical solution for ultimate bearing capacity of vertical strip anchor[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 296-304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802012.htm
[10] SHAHRIAR A R, ISLAM M S, JADID R. Ultimate pullout capacity of vertical anchors in frictional soils[J]. International Journal of Geomechanics, 2020, 20(2): 04019153. doi: 10.1061/(ASCE)GM.1943-5622.0001576
[11] KAME G S, DEWAIKAR D M, CHOUDHURY D. Pullout capacity of a vertical plate anchor embedded in cohesion-less soil[J]. Earth Science Research, 2012, 1(1): 27.
[12] YUE H Y, ZHUANG P Z, ZHANG H B, et al. Failure and deformation mechanisms of vertical plate anchors subjected to lateral loading in sand[J]. International Journal of Geomechanics, 2020, 20(11): 04020210. doi: 10.1061/(ASCE)GM.1943-5622.0001859
[13] MERIFIELD R S, SLOAN S W. The ultimate pullout capacity of anchors in frictional soils[J]. Canadian Geotechnical Journal, 2006, 43(8): 852-868. doi: 10.1139/t06-052
[14] Itasca Consulting Group, Inc. PFC2D (particle flow code in 2 dimensions)[M]. Version6.0.Minneapolis: ICG, 2019.
[15] ROY K S. Numerical Modeling of Pipe-Soil and Anchor-Soil Interactions in Dense Sand[D]. St. John's: Memorial University of Newfoundland, 2018.