• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用

洪宇超, 钱建固, 叶源新, 成龙

洪宇超, 钱建固, 叶源新, 成龙. 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43(S2): 108-111. DOI: 10.11779/CJGE2021S2026
引用本文: 洪宇超, 钱建固, 叶源新, 成龙. 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43(S2): 108-111. DOI: 10.11779/CJGE2021S2026
HONG Yu-chao, QIAN Jian-gu, YE Yuan-xin, CHENG -Long. Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 108-111. DOI: 10.11779/CJGE2021S2026
Citation: HONG Yu-chao, QIAN Jian-gu, YE Yuan-xin, CHENG -Long. Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 108-111. DOI: 10.11779/CJGE2021S2026

基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用  English Version

基金项目: 

苏州河段深层排水调蓄管道系统工程试验段监测技术验证与分析模型研究项目 

中央高校基本科研业务费专项资金项目 22120190220

国家自然科学基金项目 51578413

详细信息
    作者简介:

    洪宇超(1996— ),男,硕士研究生,主要从事岩土工程方面的研究。E-mail: hong_yuchao@163.com

    通讯作者:

    钱建固, E-mail: qianjiangu@tongji.edu.cn

  • 中图分类号: TU43

Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering

  • 摘要: 为了更准确地预测基坑工程领域的复杂时间序列,提出一种以多个监测点的监测数据构成的多维时间序列作为输入的CNN-LSTM的组合神经网络模型。首先采用卷积神经网络(CNN)对输入的监测数据进行空间特征提取,输出多个由空间特征构成的时间序列,利用长短期记忆神经网络(LSTM)对空间特征序列进行学习,预测未来的特征值,最后通过全连接层整合空间特征,输出预测的监测值。在此基础上,基于上海云岭竖井超深基坑的现场地表沉降监测数据进行工程案例验证,结果表明考虑时空关联性的组合模型精度高于仅考虑时间关联性的单一LSTM模型。
    Abstract: In order to predict the complex time series in excavation engineering field more accurately, a combined neural network model of CNN and LSTM is proposed, which takes the multi-dimensional time series composed of monitoring data from multiple monitoring points as the input. Firstly, the CNN is used to extract the spatial features of the input monitoring data, and the multiple time series composed of spatial features are the output. Secondly, the LSTM is used to learn the time series and predict the future state of the spatial features. Finally, the spatial features are integrated through the fully connected layer, and the predicted monitoring values are the output. This method is used to predict the ground settlement of the deep excavation of Yunling shaft in Shanghai. The results show that the accuracy of the combined model considering temporal and spatial correlation is higher than that of the single LSTM model considering temporal correlation only.
  • 图  1   CNN网络核心结构示意图

    Figure  1.   Structure of convolutional neural networks

    图  2   LSTM结构示意图

    Figure  2.   Structure of LSTM

    图  3   CNN-LSTM模型结构示意图

    Figure  3.   Structure of CNN-LSTM model

    图  4   降噪后数据示意图

    Figure  4.   Curves of data after noise reduction

    图  5   DB1-1测点监测值与预测值

    Figure  5.   Measured and predicted values of DB1-1

    图  6   DB1-1测点预测相对误差对比

    Figure  6.   Comparison of prediction relative errors of DB1-1

    图  7   DB2-1测点监测值与预测值

    Figure  7.   Measured and predicted values of DB2-1

    图  8   DB2-1测点预测相对误差对比

    Figure  8.   Comparison of prediction relative errors of DB2-1

    图  9   DB3-1测点监测值与预测值

    Figure  9.   Measured and predicted values of DB3-1

    图  10   DB3-1测点预测相对误差对比

    Figure  10.   Comparison of prediction relative errors of DB3-1

  • [1] 龚剑, 王旭军, 赵锡宏. 深大基坑首层盆式开挖对基坑变形影响分析[J]. 岩土力学, 2013, 34(2): 439-448. doi: 10.16285/j.rsm.2013.02.041

    GONG Jian, WANG Xu-jun, ZHAO Xi-hong. Analysis of effect of first-level basin excavation on deformation of deep and large foundation pits[J]. Rock and Soil Mechanics, 2013, 34(2): 439-448. (in Chinese) doi: 10.16285/j.rsm.2013.02.041

    [2] 于怀昌, 刘汉东, 丁仁伟. 深基坑降水过程中周围建筑物沉降的系统预测[J]. 岩石力学与工程学报, 2004, 23(22): 3905-3909. doi: 10.3321/j.issn:1000-6915.2004.22.031

    YU Huai-chang, LIU Han-dong, DING Ren-wei. Forecasting building settlement around dewatering deep foundation pit by grey system theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3905-3909. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.22.031

    [3]

    XU S L, NIU R Q. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China[J]. Computers & Geosciences, 2018, 111: 87-96.

    [4] 李彦杰, 薛亚东, 岳磊, 等. 基于遗传算法-BP神经网络的深基坑变形预测[J]. 地下空间与工程学报, 2015, 11(增刊2): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2062.htm

    LI Yan-jie, XUE Ya-dong, YUE Lei, et al. Displacement prediction of deep foundation pit based on genetic algorithms and BP neural network[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(S2): 741-749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2062.htm

    [5] 郭健, 查吕应, 庞有超, 等. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(增刊2): 343-347. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2062.htm

    GUO Jian, ZHA Lü-ying, PANG You-chao, et al. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 343-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2014S2062.htm

图(10)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回