Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于机器学习CPTU智能算法的黏性土应力历史评价

赵泽宁, 段伟, 蔡国军, 刘松玉, 常建新, 冯华磊

赵泽宁, 段伟, 蔡国军, 刘松玉, 常建新, 冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价[J]. 岩土工程学报, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
引用本文: 赵泽宁, 段伟, 蔡国军, 刘松玉, 常建新, 冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价[J]. 岩土工程学报, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
Citation: ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025

基于机器学习CPTU智能算法的黏性土应力历史评价  English Version

基金项目: 

国家重点研发计划项目课题 2020YFC1807200

国家自然科学基金项目 41877231

国家自然科学基金项目 42072299

国家自然科学基金项目 52108332

详细信息
    作者简介:

    赵泽宁(1998— ),男,硕士,主要从事现代原位测试与可靠度理论分析等方面的研究。E-mail: zeningzhao@seu.edu.cn

    通讯作者:

    蔡国军, E-mail: focuscai@163.com

  • 中图分类号: TU413

Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm

  • 摘要: 土体应力历史是衡量土体稳定性、变形特性的重要指标,常采用超固结比(OCR)表示。基于江苏黏性土孔压静力触探(CPTU)原位测试数据集,以室内固结试验结果为参考值,采用多元自适应回归样条(MARS)和自适应模糊神经网络(ANFIS)智能算法对黏性土应力历史进行评价,并将预测结果与室内试验结果和CPTU经验关系式估计值进行对比,最后进行了参数敏感性分析。结果表明:MARS模型和ANFIS模型均能够准确地预测黏性土的OCR值,且准确度均明显高于传统CPTU经验关系式;相比而言,MARS模型效果更佳。工程实践中,建议采用CPTU原始测试参数(qtfsu2)作为机器学习输入变量。MARS模型敏感性分析结果与理论研究结果一致,进一步验证了MARS模型的可靠性。提出的智能CPTU模型可以准确地预测黏性土OCR,指导工程实践。
    Abstract: The stress history is an important index to measure the stability and deformation characteristics of soils, which is often expressed by the overconsolidation ratio (OCR). Based on the CPTU dataset of Jiangsu Province, and taking the laboratory oedometer test data as the reference values, the stress history is evaluated using the multiple adaptive regression splines (MARS) and adaptive fuzzy neural network (ANFIS) algorithms. Then, the results are compared with the reference values and the estimated results of the traditional CPTU method. Finally, the sensitivity analysis is carried out to study the effect of input parameters. The results show that both the MARS model and the ANFIS model can accurately predict the OCR, and the performance is significantly better than that of the traditional CPTU model. Moreover, the MARS model performs best among all the models. In engineering practice, the original CPTU test parameters (qt, fs and u2) are recommended as the input variables. The results of sensitivity analysis of the MARS model are consistent with those of theoretical analysis, which further proves the reliability of the MARS model. The proposed intelligent models can more accurately predict the OCR of clays and guide engineering practice.
  • 图  1   Robertson土分类图

    Figure  1.   Robertson soil behavior type classification chart based on normalized CPTU data

    图  2   MARS模型和CPTU传统模型预测结果

    Figure  2.   Predicted results by MARS model and traditional CPTU model

    图  3   机器学习模型参数敏感度分析

    Figure  3.   Sensitivity analysis of machine learning models

    表  1   机器学习模型输入参数

    Table  1   Input parameters of machine learning models

    组合输入参数
    组合Aqt,fs,u2,σv0,σv0 
    组合BQt,Fr,Bq,σv0,σv0 
    下载: 导出CSV

    表  2   MARS模型和ANFIS模型预测结果评价

    Table  2   Performances of MARS model and ANFIS model

    模型输入参数评价指标
    R2RMSEMAE
    MARS模型组合A0.9490.7100.505
    组合B0.9330.7420.535
    ANFIS模型组合A0.9230.7990.591
    组合B0.9160.8320.588
    下载: 导出CSV

    表  3   OCR预测模型结果对比

    Table  3   Comparison of predicted models by OCR

    OCR预测模型评价指标
    R2RMSEMAE
    MARS模型0.9490.7100.505
    ANFIS模型0.9230.7990.591
    MLR模型0.8671.0280.699
    Chen和Mayne模型0.8491.1170.751
    下载: 导出CSV
  • [1]

    MAYNE P W. Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts[J]. Soils and Foundations, 1991, 31(2): 65-76. doi: 10.3208/sandf1972.31.2_65

    [2] 刘晓燕, 蔡国军, 邹海峰, 等. 基于CPTU数据融合技术的黏性土应力历史与强度特性评价研究[J]. 岩土工程学报, 2019, 41(7): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm

    LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm

    [3]

    ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurement[J]. Soil Dynamics and Earthquake Engineering, 2021(150): 106930.

    [4]

    LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. CRC Press, 2002.

    [5]

    ROBERTSON P K. Interpretation of cone penetration tests—a unified approach[J]. Canadian Geotechnical Journal, 2009, 46(11): 1337-1355. doi: 10.1139/T09-065

    [6]

    GOH A T C, ZHANG W G. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines[J]. Engineering Geology, 2014, 170(3): 1-10.

    [7]

    KAYA Z. Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques[J]. International Journal of Geomechanics, 2016, 16(4): 04015095. doi: 10.1061/(ASCE)GM.1943-5622.0000607

    [8]

    ZHANG W G, GOH A T C, ZHANG Y M, et al. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines[J]. Engineering Geology, 2015, 188: 29-37. doi: 10.1016/j.enggeo.2015.01.009

    [9]

    ZHANG W G, GOH A T C. Multivariate adaptive regression splines and neural network models for prediction of pile drivability[J]. Geoscience Frontiers, 2016, 7(1): 45-52. doi: 10.1016/j.gsf.2014.10.003

    [10]

    MOAYEDI H, RAFTARI M, SHARIFI A, et al. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles[J]. Engineering With Computers, 2020, 36(1): 227-238. doi: 10.1007/s00366-018-00694-w

    [11]

    ZOU H F, LIU S Y, CAI G J, et al. Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils[J]. Engineering Geology, 2017, 228(1/2): 11-38.

    [12]

    SY CHEN B, MAYNE P W. Statistical relationships between piezocone measurements and stress history of clays[J]. Canadian Geotechnical Journal, 1996, 33(3): 488-498. doi: 10.1139/t96-070

图(3)  /  表(3)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  27
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回