Numerical simulation of deformation control during excavation of deep foundation pit in soft soil with newly filled soil
-
摘要: 当存在上覆新填土条件下,深基坑开挖导致的变形规律值得重视。针对深圳某填土区线型深基坑开展有限元模拟,分析了不同围护桩插入比以及加固条件下坑底回弹变形和地表沉降的分布规律。结果表明,在土质软弱的新填土沿海软弱土地区,增加围护桩插入比虽能显著减少坑外地表沉降,但对于控制坑底隆起效果不佳;坑底土体被动区搅拌桩加固可显著减少坑底隆起和地表沉降,加固9 m深度时,坑底隆起和地表沉降可减少75%以上。Abstract: Under the overburden of newly filled soil, the deformation law of ground caused by excavation of foundation pits needs attention. Based on a linear deep foundation pit in the coastal Shenzhen-Hong Kong cooperation zone, the influences of different reinforcement plans and insertion ratios of retaining piles on the rebound deformation and surface settlement of the foundation pit are investigated through the finite element simulation. The conclusions can be drawn as follows: in the coastal soft soil areas with poor soil quality and newly filled soil, as the resistance to deformation in the passive areas is poor, the relevant measures should be taken to reduce the bottom uplift of pit and surface settlement deformation. Increasing the insertion ratio of retaining piles is not a useful way to control the uplift of pit bottom, but can significantly reduce the surface settlement outside the pit. Using the mixing piles to reinforce the passive areas of soil at the bottom of the pit can significantly reduce the uplift of the pit bottom and the surface settlement, and when the depth of reinforcement is 9 m, the uplift and surface settlement can be reduced by more than 75%.
-
-
表 1 填土区线型深基坑地层土体模型参数
Table 1 Model parameters of soil of linear deep foundation pit in filling area
土层 c′/kPa φ′/ (°)Erefoed/MPa Eref50/MPa Erefur/MPa G0/MPa γ0.7 /10-4m K0 Rf 人工填土 12 10 6.0 6.0 30.0 30.0 3.0 0.65 0.74 0.90 淤泥 10 8 — — — — — — — — 黏土 20 18 5.1 5.0 31.0 96.0 3.0 0.65 0.69 0.90 砂质黏性土 22 20 3.9 3.2 24.5 67.5 3.0 0.65 0.66 0.90 全风化岩 25 30 4.5 4.5 30.0 67.5 3.0 0.65 0.50 0.90 强风化岩 30 35 3.9 3.9 24.5 67.5 3.0 0.65 0.43 0.90 加固土 60 25 15.0 15.0 85.0 170.0 20.0 0.50 0.50 0.95 -
[1] 丘建金, 文建鹏. 深圳地区滨海软土工程特性及加固技术[J]. 工程地质学报, 2008, 16(4): 567-571. doi: 10.3969/j.issn.1004-9665.2008.04.023 QIU Jian-jin, WEN Jian-peng. Engineering characteristics and reinforcement technology of marine soft soil in costal area of Shenzhen[J]. Journal of Engineering Geology, 2008, 16(4): 567-571. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.023
[2] 刘国彬, 侯学渊. 软土基坑隆起变形的残余应力分析法[J]. 地下工程与隧道, 1996(2): 2-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199602000.htm LIU Guo-bin, HOU Xue-yuan. Residual stress analysis method for heave deformation of soft soil foundation pit[J]. Underground Engineering and Tunnels, 1996(2): 2-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC199602000.htm
[3] 孙玉永, 周顺华, 庄丽. 考虑残余应力的基坑被动区土压力及强度计算[J]. 土木工程学报, 2011, 44(9): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm SUN Yu-yong, ZHOU Shun-hua, ZHUANG Li. Calculation of passive earth pressure and shear strength in foundation pits considering residual stress[J]. China Civil Engineering Journal, 2011, 44(9): 94-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm
[4] 孔令荣. 考虑残余应力的基坑回弹变形分析[J]. 岩土工程学报, 2010, 32(增刊1): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1016.htm KONG Ling-rong. Rebound deformation of foundation pits considering residual stress[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 79-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1016.htm
[5] 谢征兵, 俞峰, 苟尧泊, 等. 软土地区基坑回弹变形预测方法研究[J]. 浙江理工大学学报(自然科学版), 2016, 35(3): 479-486. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201603027.htm XIE Zheng-bing, YU Feng, GOU Yao-bo, et al. Methods for predicting the rebound deformation of foundation pit in soft soil area[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2016, 35(3): 479-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201603027.htm
[6] 龚晓南. 地基处理手册[M]. 3版. 北京: 中国建筑工业出版社, 2008. GONG Xiao-nan. Foundation Treatment Manual[M]. 3rd ed. Beijing: China Architecture and Building Press, 2008. (in Chinese)
[7] 黄宏伟, 任臻, 钱伟. 深基坑内加固与墙体侧向位移的相互影响实测分析[J]. 建筑结构, 2000, 30(11): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200011019.htm HUANG Hong-wei, REN Zhen, QIAN Wei. Interaction analysis on consolidation of soil and lateral deformation of retaining wall in excavation pit[J]. Building Structure, 2000, 30(11): 55-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200011019.htm
[8] 秦爱芳, 胡中雄, 彭世娟. 上海软土地区受卸荷影响的基坑工程被动区土体加固深度研究[J]. 岩土工程学报, 2008, 30(6): 935-940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806025.htm QIN Ai-fang, HU Zhong-xiong, PENG Shi-juan. Depth of soil stabilization in passive area of foundation pits for Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 935-940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806025.htm
[9] 刘溢, 李镜培, 陈伟. 被动区深层搅拌桩加固对超大深基坑变形的影响[J]. 岩土工程学报, 2012, 34(增刊1): 465-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1092.htm LIU Yi, LI Jing-pei, CHEN Wei. Effect of reinforcement of deep mixing piles on deformation of ultra-deep excavations in passive zone[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 465-469. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1092.htm
[10] 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm GU Xiao-qiang, WU Rui-tuo, LIANG Fa-yun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103026.htm