Influencing factors for deformation of deep foundation pits in thick mud stratum
-
摘要: 珠海地处珠三角南部前缘,具有非常典型的软土地质条件,受沉积环境等多种因素影响,珠海软土物理力学性状与天津、杭州等地的软土相比,具有淤泥层厚度大、变化大,含水量更高,孔隙比更大,压缩性更大,强度明显偏低等突出特点。依托珠海横琴口岸及综合交通枢纽功能区项目深基坑工程,运用有限元技术探讨了该地区深厚淤泥地层条件下基坑的变形特点,系统分析了坑内加固区范围、支护桩嵌固深度、支护桩刚度等因素对基坑变形的影响及影响规律,总结了该深基坑的变形控制措施及控制效果。以期为该地区深厚淤泥地层中的深基坑设计和施工提供指导。Abstract: Zhuhai is located at the southern front of Pearl River Delta and has very typical soft soil geological conditions. Affected by various factors such as sedimentary environment, the physical and mechanical properties of Zhuhai soft soils are different from those of Tianjin and Hangzhou soft soils. The mud stratum in Zhuhai is characterized by large thickness, great variation, higher water content, larger void ratio, greater compressibility and obviously lower strength. Based on the deep excavation project for comprehensive traffic hub of Hengqin Port, the deformation characteristics of foundation pit under thick mud stratum in this area are discussed by using the finite element method. The influences of soil improvement area, embedded depth and stiffness of retaining piles on the deformation of deep foundation pit are analyzed. The deformation control measures and effects of the deep foundation pit for comprehensive traffic hub of Hengqin Port are summarized. It is expected to provide guidance for the design and construction of deep foundation pits in thick mud stratum in this area.
-
0. 引言
堰塞坝是指在一定的地质与地貌条件下,由于地震或降雨等引起的山崩、滑坡、泥石流等阻塞山谷、河道所形成的堆积体[1]。作为自然过程的产物,堰塞坝呈现出级配宽泛、形状不规则、结构复杂等特点[2]。堰塞坝在世界范围内广泛存在,特别是近年来极端天气和地质灾害频发,导致堰塞坝数量显著增多[3-4]。与人工填筑坝不同,堰塞坝是由土壤和岩石在自然不稳定状态下混合而成,缺少溢洪道或泄流槽[2]。因此,一旦上游持续来流,堰塞坝的溃决风险远高于人工填筑坝。Shen等[5]对352个具有寿命信息的堰塞坝进行统计分析,发现生存时间小于1 d的占29.8%,小于1个月的占68.2%,小于1 a的占84.4%。
漫顶和渗透破坏是堰塞坝最常见的溃坝模式[4],94%的堰塞坝因漫顶而溃坝,5%因渗透破坏而溃坝,1%因坝坡失稳而溃坝[2]。因此,深入研究堰塞坝漫顶溃坝过程和溃决机理,对科学高效应急处置,最大限度减少其灾害损失至关重要。
堰塞坝漫顶溃决是一个涉及水土耦合和结构破坏的复杂过程。物理模型试验是研究其漫顶溃坝过程和溃决机理的常用手段,近年来,学者们开展了一系列模型试验,包括大尺度模型试验(坝高 > 1 m)[6]和小尺度模型试验(坝高 < 1 m)[7-8]。小尺度试验模型与原型应力水平差别显著,试验结果往往与实际存在差异,不同学者得到的结论也不一致。虽然大尺度试验的结果更接近原型坝,但试验成本高、周期长、风险难以控制。在高速旋转条件下,土工离心机产生的超重力场具有“时空放大”效应,可以在小尺度模型中产生原型级别的有效应力,同时满足坝体材料、水动力条件等相似准则。因此,离心模型试验可以用于研究由宽级配坝料组成的堰塞坝的漫顶溃决,它能够以较低成本在短时间内再现其漫顶溃坝过程,这对于揭示其漫顶溃决机理和溃坝过程具有重要意义和价值。
本文利用离心模型试验研究了堰塞坝漫顶溃决问题,揭示了溃决机理、溃口演化规律及溃口流量过程,首次通过离心模型试验研究了坝高、下游坡比和坝料级配对堰塞坝漫顶溃坝过程的影响,为堰塞坝漫顶溃坝过程和溃决机理的认知提供了科学参考。
1. 溃坝离心模型试验系统
以400g·t土工离心机为基础,南京水利科学研究院研制了溃坝离心模型试验系统[9],主要由大流量水流控制系统、专用模型箱、数据采集系统和图像记录装置组成(如图 1)。
1.1 大流量水流控制系统
以与离心机同轴旋转的环形接水环为核心,试验用水由屋顶水箱提供,据试验前设定的供水流量过程,由伺服水阀流量控制系统精确控制上游来水条件,入水口与接水环无硬件接触,输水流量也不受接触限制,实现了从1g重力场到Ng重力场的水流转化。该系统可持续提供足够的溃坝水流,最大流量达50 L/s。
1.2 专用模型箱
有效尺寸为1.2 m×0.4 m×0.8 m(长×宽×高)(如图 2(a)),在模型箱下游端嵌入薄壁矩形量水堰,并安装2个孔压传感器(如图 2(b)),输出信号为电压信号,可转换为水深,以获得准确的溃口流量过程。溃口流量可根据水深采用下式计算:
Q=m0Bw√2Nght1.5。 (1) 式中:Q为溃口流量;m0为流量系数;Bw为量水堰宽度;Ng为离心机加速度;h为水深;t为时间。
1.3 数据采集系统和图像记录装置
数据采集系统由转臂上的数据采集模块和地面上的工控机组成,孔压传感器与数据采集系统相连。图像记录装置为分别位于模型箱顶部和侧面的相机。
1.4 相似准则
溃坝是典型的水土耦合过程,在使用离心机进行溃坝探究时,需建立应力和溃坝水流的相似准则,推导方法详见文献[9],常用物理量的相似准则见表 1。
表 1 常用物理量相似准则Table 1. Similarity criteria of common physical quantities物理量 加速度 长度 面积 体积 应力 相似比(模型/原型) N 1/N 1/N2 1/N3 1 物理量 孔隙比 密度 质量 流量 时间 相似比(模型/原型) 1 1 1/N3 1/N2 1/N 2. 试验设计与过程
选择坝高、下游坡比、坝料级配3个影响因素进行试验设计,利用溃坝离心模型试验系统进行4种工况下堰塞坝漫顶溃决试验,探究溃口形态演化规律、溃口流量过程,以及不同影响因素对漫顶溃坝过程的影响,揭示堰塞坝漫顶溃决机理。
2.1 试验设计
基于模型箱尺寸、供水条件及试验用坝料,设定了各工况试验参数(见表 2)。以唐家山堰塞坝现场采样的平均级配为原型级配,试验坝料最大粒径设为40 mm,用等量替代法得到模型级配(见图 3)。
表 2 4种工况参数设定Table 2. Parameter settings of four conditions工况 坝高/mm 下游坡比 d50/mm 1 250 1∶3 5 2 350 1∶3 5 3 250 1∶5 5 4 250 1∶3 1 注:d50为级配平均粒径。 坝料经晾晒、筛分后分为5个粒径组,分别为40~20,20~10,10~5,5~1, < 1 mm。土料相对质量密度为2.75,试样孔隙率设为28%,对应干密度为1.98 g/cm3,含水率设为5%。离心加速度设置为50g。为了便于观察溃口下切和下游坡冲蚀情况,在模型箱钢化玻璃一侧开设初始溃口,初始溃口形状为梯形,顶宽70 mm,底宽30 mm,高40 mm。
2.2 试验过程
各工况试验按照如下步骤依次进行:①土样准备;②模型坝制作;③离心机配重;④孔压传感器与相机安装;⑤溃坝试验;⑥试验数据测量、记录与保存;⑦机室清理。
3. 试验结果及分析
以工况4为例分析堰塞坝漫顶溃坝过程与溃决机理,并基于各工况试验结果,分别比较坝高、下游坡比和坝料级配对溃坝过程的影响。下文中试验结果均已按照相似准则换算为原型坝的物理量。
3.1 溃口演化规律
两台相机记录了工况4溃坝过程的视频,通过对溃口形态和流量演化过程中的突变进行分析,将堰塞坝漫顶溃决的过程分为4个阶段。
阶段1:表层冲刷。溃坝初期,漫顶水流从溃口溢出,对下游坡进行冲蚀。坝体表面细颗粒被水流带走,形成高浓度挟砂水流,此阶段溃口变化不明显。
阶段2:溯源冲蚀。由于下游坡脚处水流流速更大,初始冲坑在此形成,在水动力作用下冲坑逐渐向上游发展直至坝顶,此阶段下游坝坡明显变缓。
阶段3:沿程侵蚀。坝顶高程在溯源冲蚀结束后突然下降,溃口水动力条件突然增加,溃口迅速下切展宽,并伴随溃口边坡的失稳,溃口流量出现峰值。
阶段4:溃口稳定。随着上游水位下降,水流冲蚀能力减弱。粗颗粒滞留在下游边坡,导致边坡粗化,直至溃口不再发展,溃口流量趋于稳定。
定义漫顶水流从溃口溢出时为初始时刻,各阶段选取典型坝体图像(如图 4),绘制了溃口处坝体纵剖面图(如图 5(a))。
3.2 溃口流量过程
试验前测定流量系数m0=0.278,h(t)可由孔压传感器读数得到,根据式(1)计算得到溃口流量过程。
图 5(b)描绘了工况4原型坝的溃口流量过程。首先,在溃坝开始的最初几分钟,流量缓慢增加,对应阶段1。其次,流量迅速增大,在t=9.6 min时达到14.0 m3/s,对应阶段2。随后,流量增加的速率略有减慢,在t=13.4 min时达到峰值流量17.8 m3/s,并迅速下降,对应阶段3。最后,当t=38.3 min时,流量逐渐趋于稳定,溃口出流量等于入流量,对应阶段4。
3.3 不同因素对溃坝过程影响
以工况1为对照组,通过改变坝高、下游坡比和坝料级配,研究不同因素对堰塞坝漫顶溃坝过程的影响。选取峰值流量、达峰时间和溃坝后的相对残余坝高(残余坝高与初始坝高的比值)3个溃坝参数进行比较分析(见表 3)。
表 3 4种工况溃坝参数对比Table 3. Comparison of dam breach parameters of four conditions工况 影响因素 峰值流量/(m3·s−1) 变化幅度/% 达峰时间/min 变化幅度/% 相对残余坝高/% 变化幅度/% 1 — 11.4 18.9 66.4 2 坝高 18.6 +62.6 16.1 -14.8 55.4 -16.5 3 坡比 9.5 -16.6 24.5 +30.0 75.2 +13.3 4 级配 17.8 +56.0 13.4 -29.0 47.2 -28.9 注:变化幅度表示与工况1相比,各溃坝参数的增量。 可以看出,各因素对溃坝参数的影响规律如下:当坝高增加或坝料平均粒径减小时,峰值流量显著增大,达峰时间提前,相对残余坝高减小;当下游坡比减小时,峰值流量减小,达峰时间明显推迟,相对残余坝高增大。溃口峰值流量对坝高最为敏感,平均粒径次之,达峰时间对下游坡比最为敏感,相对残余坝高对平均粒径最为敏感。
下面从坝料冲蚀的角度对上述影响在机理层面上进行分析,坝料的冲蚀率可采用下式计算[10]:
E=kd(τb−τc)。 (2) 式中:E为冲蚀率;kd为冲蚀系数;τb为水流剪应力;τc为坝料临界起动剪应力。
对比工况1和2,当堰塞坝坝高增加时,漫顶水流势能增加,水动力条件增强,τb增大,对下游坡冲蚀作用更强,故E增大,从而加快了溃坝进程与溃口发展。因此峰值流量增加,峰值时间提前,相对残余坝高减小。
对比工况1和3,当堰塞坝下游坡比减小时,坝料颗粒自重在坝坡方向的分量减小,坝体自身更加稳定,τc增大,漫顶水流重力势能释放转换为动能的过程减缓,τb减小,故E减小,从而抑制了溃坝进程与溃口发展。因此峰值流量减小,峰值时间延后,相对残余坝高增加。
对比工况1和4,在相同水动力条件下,当堰塞坝平均粒径减小,即坝体材料变细时,τc减小,坝体更容易被冲蚀,故E增大,从而加快了溃坝进程与溃口发展。因此峰值流量增加,峰值时间提前,相对残余坝高减小。
4. 结论
(1)基于堰塞坝漫顶溃坝过程中的溃口形态和流量演化过程的突变特征,可将溃坝过程划分为4个阶段:表层冲刷、溯源冲蚀、沿程侵蚀和溃口稳定,并对每个阶段的出现时刻和发展过程进行了界定。
(2)坝高、下游坡比和坝料级配对堰塞坝漫顶溃坝过程影响较大。当坝高增加或坝料平均粒径减小时,峰值流量增大,达峰时间提前,相对残余坝高减小;当下游坡比减小时,峰值流量减小,达峰时间推迟,相对残余坝高增大。
(3)溃口峰值流量主要受坝高影响,其次是平均粒径;达峰时间对下游坡比最为敏感,相对残余坝高主要受平均粒径影响。
-
表 1 HSS模型土体物理力学参数
Table 1 Physical and mechanical parameters of soils in HSS model
层号 ① ② ③1 ③4 ④2 土层名称 填土 淤泥 粉质黏土 砾砂 强风化花岗岩 平均厚度/m 5.3 26.3 5.6 41.4 4.6 γ/(kN·m-3) 18.7 16.3 19.3 20.9 21 E50/MPa 4.6 2 5 20.4 19 Eode/MPa 4.6 2 5 10.2 19 Eur/MPa 27.6 8 30 122.4 76 c'/kPa 20.4 4.6 15.1 1 25 φ'/(°) 14.4 2.4 26.9 33.5 35 m 0.5 0.8 0.8 0.5 0.5 γ0.7/(10-4) 2.7 2.7 2.7 2.7 2.7 G0/MPa 83 40 90 367 345 -
[1] 徐中华, 王建华, 王卫东. 上海地区深基坑工程中地下连续墙的变形性状[J]. 土木工程学报, 2008, 41(8): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200808015.htm XU Zhong-hua, WANG Jian-hua, WANG Wei-dong. Deformation behavior of diaphragm walls in deep excavations in Shanghai[J]. China Civil Engineering Journal, 2008, 41(8): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200808015.htm
[2] 万星, 戈铭, 贺智江, 等. 南京软土地区基坑墙体变形性状研究[J]. 岩土工程学报, 2019, 41(增刊1): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1023.htm WAN Xing, GE Ming, HE Zhi-jiang, et al. Characteristics of deformation of retaining wall due to deep excavation in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1023.htm
[3] 廖少明, 魏仕锋, 谭勇, 等. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503011.htm LIAO Shao-ming, WEI Shi-feng, TAN Yong, et al. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503011.htm
[4] 宋许根, 王志勇, 柏威伟, 等. 珠海西部中心城区大面积深厚软土工程特性研究[J]. 岩石力学与工程学报, 2019, 38(7): 1434-1451. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907013.htm SONG Xu-gen, WANG Zhi-yong, BAI Wei-wei, et al. Study on engineering characteristics of large-scale deep soft soil in central area of western Zhuhai[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1434-1451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907013.htm
[5] 梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702012.htm LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al. Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702012.htm
[6] 陈晓庆, 丁文其, 曲红波, 等. 珠海深厚淤泥地层中大直径桩插入比对基坑变形特性的影响[J]. 中南大学学报(自然科学版), 2020, 51(9): 2514-2524. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009017.htm CHEN Xiao-qing, DING Wen-qi, QU Hong-bo, et al. Influence of insertion ratio of large-diameter piles in deep mud stratum on deformation characteristics of foundation pit in Zhuhai[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2514-2524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009017.htm
-
期刊类型引用(2)
1. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 . 百度学术
2. 何健健,蒋希豪,汪玉冰. 离心模型试验中温度及孔隙率对砂土渗透系数的影响研究(英文). Journal of Zhejiang University-Science A(Applied Physics & Engineering). 2025(03): 177-194 . 百度学术
其他类型引用(1)