Stress-strain model and deformation parameters of K0-consolidated coral sand
-
摘要: 珊瑚砂作为岛礁吹填地基的填料,在填筑期的应力路径具有K0固结的特点。利用三轴试验系统对不同初始相对密度的珊瑚砂进行了一系列的K0固结试验,研究了珊瑚砂的应力–应变特性,测试了珊瑚砂的K0系数和颗粒破碎率。基于广义虎克定律,建立了幂函数形式的非线性弹性模型来描述K0固结珊瑚砂的应力–应变关系,提出了变形参数的函数表达式,并将模型计算结果与试验曲线进行了对比。结果表明:K0固结珊瑚砂的应力-应变关系可用幂函数表示。随着轴向有效应力的增加,K0减小,颗粒破碎率增大。在相同的轴向有效应力条件下,珊瑚砂的初始相对密度越小,K0越大,颗粒破碎率越高。在K0状态下,随着轴向有效应力的增加,珊瑚砂的切线模量增加,切线泊松比减小。珊瑚砂的初始相对密度越大,相同轴向有效应力下的切线模量越大,切线泊松比越小。幂函数模型合理地预测了一定应力范围内K0固结珊瑚砂的应力–应变关系,模型及变形参数反映了K0固结的应力路径对应力–应变关系的影响。Abstract: The stress path followed by soil consolidation in the hydraulic filling site where the coral sand is used as the filling materials is characterized by K0-consolidation. In order to investigate the stress-strain behaviors of the K0-consolidated coral sand, a series of K0-consolidation tests in a triaxial cell are carried out for the coral sands with different initial relative densities. The K0-values of the coral sands are measured and their particle breakage indexes are evaluated. Based on the generalized Hooke's law, a nonlinear elastic model in the form of a power function is proposed to describe the stress-strain relationship of the K0-consolidated coral sand. The functional expressions for the deformation parameters are presented, and the calculated results of the model are compared with the test curves. The results show that the stress-strain relationship of the K0-consolidated coral sand may be expressed by a power function. With the increase of the axial effective stress, the K0-value decreases, and the particle breakage index increases. Under the same axial effective stress, a small initial relative density corresponds to a large K0-value and a large particle breakage index. As the increase of the axial effective stress in the K0-state, the tangent modulus of the coral sand increases, and the tangent Poisson's ratio decreases. Under the same axial effective stress, the larger the initial relative density, the larger the tangent modulus, and the smaller the tangent Poisson's ratio. The stress-strain relationship of the K0-consolidated coral sand with different initial relative densities within a certain stress range is reasonably predicted by the power function model. The model and deformation parameters reflect the influence of the stress path of K0-consolidation on the stress-strain relationship.
-
-
表 1 珊瑚砂的基本物理指标
Table 1 Physical parameters of coral sand
土粒相对质量密度Gs 平均粒径d50/mm 不均匀系数Cu 最大孔隙比emax 最小孔隙比emin 2.78 0.50 1.93 1.196 0.829 表 2 式(1)参数A,B的试验回归值
Table 2 Test regression values for parameters A and B of Eq. (1)
Dr A B R2 0.5 718.94 1.281 0.9960 0.6 732.40 1.242 0.9961 0.7 779.94 1.245 0.9969 0.8 870.28 1.261 0.9976 0.9 906.65 1.237 0.9965 表 3 式(2)参数K1,ΔK的试验回归值
Table 3 Test regression values for parameters K1 and ΔK of Eq. (2)
Dr K1 ΔK R2 0.5 0.434 0.087 0.9777 0.6 0.426 0.093 0.9739 0.7 0.420 0.097 0.9800 0.8 0.403 0.090 0.9903 0.9 0.383 0.087 0.9589 表 4 试验参数回归值的计算公式
Table 4 Formulas for test parameter regression value
试验参数 回归值计算公式 相关参数 R2 A A=a1+b1Dr a1 =442.33, b1=513.30 0.9284 B B=c1 c1= 1.253 K1 K1=a2−b2Dr a2 =0.501, b2=0.125 0.9226 ΔK ΔK=c2 c2=0.091 表 5 试验参数的计算回归值
Table 5 Calculated regression values of test parameters
Dr A B K1 ΔK 0.5 698.98 1.253 0.439 0.091 0.6 750.31 1.253 0.426 0.091 0.7 801.64 1.253 0.414 0.091 0.8 852.97 1.253 0.401 0.091 0.9 904.30 1.253 0.389 0.091 -
[1] 刘祖德, 陆士强, 杨天林, 等. 应力路径对填土应力应变关系的影响及其应用[J]. 岩土工程学报, 1982, 4(4): 45-55. http://cge.nhri.cn/cn/article/id/8692 LIU Zude, LU Shiqiang, YANG Tianlin, et al. The influence of stress path on the stress-strain behavior of earthfills and its application[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(4): 45-55. (in Chinese) http://cge.nhri.cn/cn/article/id/8692
[2] 孙岳崧, 濮家骝, 李广信. 不同应力路径对砂土应力-应变关系影响[J]. 岩土工程学报, 1987, 9(6): 78-88. http://cge.nhri.cn/cn/article/id/9112 SUN Yuesong, PU Jialiu, LI Guangxin. Influence of different stress path on stress-strain relationship of sandy soil[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(6): 78-88. (in Chinese) http://cge.nhri.cn/cn/article/id/9112
[3] 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002 YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
[4] DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653. doi: 10.1061/JSFEAQ.0001458
[5] DUNCAN J M, BYRNE P, WONG K S, et al. Strength, Stress-Strain, and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses[R]. Berkeley, California: College of Engineering, University of California, 1980.
[6] DOMASCHUK L, VALLIAPPAN P. Nonlinear settlement analysis by finite element[J]. Journal of the Geotechnical Engineering Division, 1975, 101(7): 601-614. doi: 10.1061/AJGEB6.0000175
[7] 柳志平, 刘泉声, 程勇, 等. 卸荷土体本构模型选用及其参数的确定——以港珠澳大桥拱北隧道明挖段基坑为例[J]. 岩土工程学报, 2012, 34(增刊1): 197-202. http://cge.nhri.cn/cn/article/id/14746 LIU Zhiping, LIU Quansheng, CHENG Yong, et al. Selection and parametric determination of constitutive model for unloading soil—Case study of foundation pit at open excavation section of Gongbei tunnel of Hongkong- Zhuhai-Macau Bridge[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 197-202. (in Chinese) http://cge.nhri.cn/cn/article/id/14746
[8] 邵晓泉, 迟世春. 堆石料变形参数的粒径尺寸相关性研究[J]. 岩土工程学报, 2020, 42(9): 1715-1722. doi: 10.11779/CJGE202009016 SHAO Xiaoquan, CHI Shichun. Particle size correlation of deformation parameters for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1715-1722. (in Chinese) doi: 10.11779/CJGE202009016
[9] MIHAI L A, GORIELY A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2017, 473(2207): 20170607.
[10] 张季如, 罗明星, 彭伟珂, 等. 不同应力路径下钙质砂力学特性的排水三轴试验研究[J]. 岩土工程学报, 2021, 43(4): 593-602. doi: 10.11779/CJGE202104001 ZHANG Jiru, LUO Mingxing, PENG Weike, et al. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. (in Chinese) doi: 10.11779/CJGE202104001
[11] 胡利文, 刘志军. 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799, 812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103022.htm HU Liwen, LIU Zhijun. Analysis on deformation mechanism of soft soil reinforcement by vacuum preloading[J]. Rock and Soil Mechanics, 2021, 42(3): 790-799, 812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103022.htm
[12] 王立忠, 沈恺伦. K0固结结构性软黏土的本构模型[J]. 岩土工程学报, 2007, 29(4): 496-504. http://cge.nhri.cn/cn/article/id/12452 WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504. (in Chinese) http://cge.nhri.cn/cn/article/id/12452
[13] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
[14] CHU J, GAN C L. Effect of void ratio on K0 of loose sand[J]. Géotechnique, 2004, 54(4): 285-288.
[15] XIAO Y, LIU H L, CHEN Q S, et al. Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process[J]. Acta Geotechnica, 2017, 12(5): 1177-1184.
[16] WANG C Y, DING X M, XIAO Y, et al. Effects of relative densities on particle breaking behaviour of non-uniform grading coral sand[J]. Powder Technology, 2021, 382: 524-531.
[17] 相彪, 张宗亮, 迟世春. 堆石料等应力比路径三模量增量非线性模型[J]. 岩土工程学报, 2008, 30(9): 1322-1326. http://cge.nhri.cn/cn/article/id/12969 XIANG Biao, ZHANG Zongliang, CHI Shichun. Three-modulus incremental nonlinear model of rockfill under paths of constant stress ratio[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1322-1326. (in Chinese) http://cge.nhri.cn/cn/article/id/12969
-
期刊类型引用(8)
1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术
其他类型引用(6)
-
其他相关附件