• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

外荷载随时间变化下考虑起始电势梯度的一维电渗固结解析解

葛尚奇, 江文豪, 郑凌逶, 谢新宇, 谢康和

葛尚奇, 江文豪, 郑凌逶, 谢新宇, 谢康和. 外荷载随时间变化下考虑起始电势梯度的一维电渗固结解析解[J]. 岩土工程学报, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555
引用本文: 葛尚奇, 江文豪, 郑凌逶, 谢新宇, 谢康和. 外荷载随时间变化下考虑起始电势梯度的一维电渗固结解析解[J]. 岩土工程学报, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555
GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555
Citation: GE Shangqi, JIANG Wenhao, ZHENG Lingwei, XIE Xinyu, XIE Kanghe. Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 580-589. DOI: 10.11779/CJGE20211555

外荷载随时间变化下考虑起始电势梯度的一维电渗固结解析解  English Version

基金项目: 

国家自然科学基金项目 51378469

国家自然科学基金项目 51708497

浙江省自然科学基金项目 LZ20E080001

浙江省自然科学基金项目 LQ19E080009

详细信息
    作者简介:

    葛尚奇(1995—),男,博士研究生,主要从事软土固结和地基处理方面的研究。E-mail: geshangqi@zju.edu.cn

    通讯作者:

    郑凌逶, E-mail: zhenglingwei@zju.edu.cn

  • 中图分类号: TU431

Analytical solution for one-dimensional electroosmosis consolidation considering threshold potential gradient under time-dependent loading

  • 摘要: 将起始电势梯度的概念引入电渗固结理论,基于相关假定建立了外荷载随时间变化下考虑有效电势衰减的一维电渗固结控制方程,利用变量代换和分离变量法获得了电渗固结通解,并给出了常见加荷形式下解析解的表达式。将退化解与已有解析解进行比较,并将所提解与有限差分解展开对比,验证了所提解答正确性。基于所提解析解,分析了相关参数对软土地基电渗固结特性的影响。结果表明:起始电势梯度的存在降低了超孔隙水压力绝对值和沉降量;水力渗透系数的减小有利电渗排水固结过程的进行,且电渗透系数与水力渗透系数比值越大,沉降量越大、电渗排水固结效果越好;当采用电渗联合堆载预压法加固时,电渗作用可降低因外荷载引起的正超孔隙水压力的最大值,提高固结排水时土体的稳定性。
    Abstract: The concept of the threshold potential gradient is introduced into the electroosmosis consolidation theory. The governing equation for one-dimensional electroosmosis consolidation considering the effective potential attenuation with time-dependent loading is established based on the corresponding assumptions. The general analytical solutions for electroosmosis consolidation are obtained by the algebraic transformation and variable separation methods. Meanwhile, the expressions for the analytical solutions of electroosmosis consolidation under common loading patterns are given. The correctness of the proposed solutions is verified by comparing the degenerative analytical solutions in this study with the existing analytical solutions, combined with the comparison between the calculated results of the proposed solutions and the finite difference solutions. Based on the proposed analytical solutions, the effects of the related parameters on the electroosmosis consolidation characteristics of soft soils are analyzed. The results show that the existence of the threshold potential gradient reduces the absolute value of the excess pore water pressure and the settlement of soft soils. The decrease in hydraulic permeability coefficient is conducive to electroosmosis consolidation. The settlement of soft soils increases with the increasing ratio of electroosmosis permeability coefficient to hydraulic permeability coefficient, which leads to a better drainage and consolidation effect. When the soft soils are strengthened by the combined electroosmosis and surcharge preloading, the electroosmosis reduces the maximum value of the positive excess pore water pressure caused by time-dependent loading, which is helpful in improving the stability of soft soils during the consolidation process.
  • 图  1   电渗固结模型

    Figure  1.   Electroosmosis consolidation model

    图  2   几种常见的加荷形式

    Figure  2.   Several common loading patterns

    图  3   本文解析解与有限差分解比较

    Figure  3.   Comparison between proposed analytical and finite difference solutions

    图  4   起始电势梯度对超孔隙水压力的影响

    Figure  4.   Effects of threshold potential gradient on excess pore water pressure

    图  5   起始电势梯度对固结度的影响

    Figure  5.   Effects of threshold potential gradient on degree of consolidation

    图  6   电渗透系数和水力渗透系数比值对超孔隙水压力的影响

    Figure  6.   Effects of ratio of electric permeability coefficient to hydraulic permeability coefficient on excess pore water pressure

    图  7   电渗透系数和水力渗透系数比值对固结度的影响

    Figure  7.   Effects of ratio of electric permeability coefficient to hydraulic permeability coefficient on degree of consolidation

    图  8   残余电压对超孔隙水压力的影响

    Figure  8.   Effects of residual voltage on excess pore water pressure

    图  9   残余电压对固结度的影响

    Figure  9.   Effects of residual voltage on degree of consolidation

    图  10   变荷载对超孔隙水压力的影响

    Figure  10.   Effects of time-dependent loading on excess pore water pressure

    图  11   变荷载对固结度的影响

    Figure  11.   Effects of time-dependent loading on degree of consolidation

    表  1   软土地基的计算参数

    Table  1   Parameters of soft soils

    参数 取值 参数 取值
    土体厚度H/m 1.0 固结系数Cv/(m2·s-1) 9.68×10-7
    初始电渗透系数
    ke0/(m2·s-1·V-1)
    1.2×10-9 起始电势梯度
    ieo/(V·m-1)
    5.0
    初始水力渗透系数kv0/(m·s-1) 9.5×10-9 q0/kPa 0
    有效电压随时间衰减系数b/h-1 2.0×10-5 qu/kPa 100
    初始有效电压ϕa/V 100.0 tc/h 100
    残余有效电压ϕr/V 50.0
    下载: 导出CSV
  • [1] 郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm

    ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(6): 1064-1073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201706002.htm

    [2]

    GE S Q, ZANG J C, WANG Y C, et al. Combined stabilization/solidification and electroosmosis treatments for dredged marine silt[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1157-1166.

    [3]

    OU C Y, CHIEN S C, SYUE Y T, et al. A novel electroosmotic chemical treatment for improving the clay strength throughout the entire region[J]. Applied Clay Science, 2018, 153: 161-171. doi: 10.1016/j.clay.2017.11.031

    [4] 刘飞禹, 张志鹏, 王军, 等. 分级真空预压联合间歇电渗法加固疏浚淤泥宏微观分析[J]. 岩石力学与工程学报, 2020, 39(9): 1893–1901. doi: 10.13722/j.cnki.jrme.2020.0163

    LIU Feiyu, ZHANG Zhipeng, WANG Jun, et al. Macro and micro analyses of stepped vacuum preloading combined with intermittent electroosmosis for dredger slurry[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1893–1901. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0163

    [5]

    LIU H L, CUI Y L, SHEN Y, et al. A new method of combination of electroosmosis, vacuum and surcharge preloading for soft ground improvement[J]. China Ocean Engineering, 2014, 28(4): 511-528. doi: 10.1007/s13344-014-0042-3

    [6]

    ZHUANG Y F. Large scale soft ground consolidation using electrokinetic geosynthetics[J]. Geotextiles and Geomembranes, 2021, 49(3): 757-770. doi: 10.1016/j.geotexmem.2020.12.006

    [7]

    GAN Q Y, ZHOU J, LI C Y, et al. Vacuum preloading combined with electroosmotic dewatering of dredger fill using the vertical-layered power technology of a novel tubular electrokinetic geosynthetics: test and numerical simulation[J]. International Journal of Geomechanics, 2022, 22(1): 05021004. doi: 10.1061/(ASCE)GM.1943-5622.0002211

    [8]

    ESRIG M I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(4): 899-921. doi: 10.1061/JSFEAQ.0001178

    [9]

    WAN T Y, MITCHELL J K. Electro-osmotic consolidation of soils[J]. Journal of the Geotechnical Engineering Division, 1976, 102(5): 473-491. doi: 10.1061/AJGEB6.0000270

    [10]

    FELDKAMP J R, BELHOMME G M. Large-strain electrokinetic consolidation: theory and experiment in one dimension[J]. Géotechnique, 1990, 40(4): 557-568. doi: 10.1680/geot.1990.40.4.557

    [11] 王柳江, 刘斯宏, 王子健, 等. 堆载-电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91-98. doi: 10.6052/j.issn.1000-4750.2012.04.0303

    WANG Liujiang, LIU Sihong, WANG Zijian, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[J]. Engineering Mechanics, 2013, 30(12): 91-98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0303

    [12]

    WU H, HU L M, QI W G, et al. Analytical solution for electroosmotic consolidation considering nonlinear variation of soil parameters[J]. International Journal of Geomechanics, 2017, 17(5): 06016032. doi: 10.1061/(ASCE)GM.1943-5622.0000821

    [13]

    DENG A, ZHOU Y D. Modeling electroosmosis and surcharge preloading consolidation. Ⅰ: model formulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 04015093. doi: 10.1061/(ASCE)GT.1943-5606.0001417

    [14] 杨晓宇, 董建华. 考虑有效电势衰减的一维电渗固结多态继承计算方法[J]. 岩石力学与工程学报, 2020, 39(12): 2530-2539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm

    YANG Xiaoyu, DONG Jianhua. A polymorphic inheritance calculation method of one-dimensional electro-osmotic consolidation considering effective potential attenuation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2530-2539. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012015.htm

    [15] 王柳江, 王耀明, 刘斯宏, 等. 考虑有效电压衰减的二维真空预压联合电渗排水固结解析解[J]. 岩石力学与工程学报, 2019, 38(S1): 3134-3141. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm

    WANG Liujiang, WANG Yaoming, LIU Sihong, et al. 2D analytical solution of consolidation for vacuum preloading combined with electro-osmosis drainage considering reduction of effective voltage[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3134-3141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1054.htm

    [16]

    WANG L J, SHEN C M, LIU S H, et al. A hydro-mechanical coupled solution for electro-osmotic consolidation in unsaturated soils considering the decrease in effective voltage with time[J]. Computers and Geotechnics, 2021, 133: 104050. doi: 10.1016/j.compgeo.2021.104050

    [17]

    SHANG J Q. Electroosmosis-enhanced preloading consolidation via vertical drains[J]. Canadian Geotechnical Journal, 1998, 35(3): 491-499. doi: 10.1139/t98-018

    [18] 王军, 符洪涛, 蔡袁强, 等. 线性堆载下软黏土一维电渗固结理论与试验分析[J]. 岩石力学与工程学报, 2014, 33(1): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm

    WANG Jun, FU Hongtao, CAI Yuanqiang, et al. Analyses of one dimensional electro-osmotic consolidation theory and test of soft clay under linear load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm

    [19] 李瑛, 龚晓南, 卢萌盟, 等. 堆载-电渗联合作用下的耦合固结理论[J]. 岩土工程学报, 2010, 32(1): 77-81. http://cge.nhri.cn/cn/article/id/11899

    LI Ying, GONG Xiaonan, LU Mengmeng, et al. Coupling consolidation theory under combined action of load and electro-osmosis[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 77-81. (in Chinese) http://cge.nhri.cn/cn/article/id/11899

    [20]

    SHANG J Q, TANG M, MIAO Z. Vacuum preloading consolidation of reclaimed land: a case study[J]. Canadian Geotechnical Journal, 1998, 35(5): 740-749. doi: 10.1139/t98-039

    [21] 黄鹏华, 王柳江, 刘斯宏, 等. 真空堆载预压联合电渗竖向排水地基非线性固结解析解[J]. 岩石力学与工程学报, 2021, 40(1): 206-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm

    HUANG Penghua, WANG Liujiang, LIU Sihong, et al. Nonlinear analytical solutions for vertical drainage consolidation of foundations under vacuum-surcharge preloading combined with electroosmosis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 206-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101019.htm

    [22] 苏金强, 王钊. 电渗的二维固结理论[J]. 岩土力学, 2004, 25(1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm

    SU Jinqiang, WANG Zhao. Theory of two-dimensional electro-osmotic consolidation of soils[J]. Rock and Soil Mechanics, 2004, 25(1): 125-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401029.htm

    [23] 谢新宇, 郑凌逶, 谢康和, 等. 电势梯度与电极间距变化的滨海软土电渗模型试验研究[J]. 土木工程学报, 2019, 52(1): 108-114, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm

    XIE Xinyu, ZHENG Lingwei, XIE Kanghe, et al. Experimental study on electro-osmosis of marine soft soil with varying potential gradient and electrode spacing[J]. China Civil Engineering Journal, 2019, 52(1): 108-114, 121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201901013.htm

    [24]

    XIE K H, WANG K, WANG Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics, 2010, 37(4): 487-493.

    [25] 李传勋, 董兴泉, 金丹丹, 等. 考虑起始水力坡降的软土大变形非线性固结分析[J]. 岩土力学, 2017, 38(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm

    LI Chuanxun, DONG Xingquan, JIN Dandan, et al. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient[J]. Rock and Soil Mechanics, 2017, 38(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702011.htm

    [26]

    TANG X W, ONITSUKA K. Consolidation by vertical drains under time-dependent loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(9): 739-751.

    [27] 江文豪, 詹良通, 杨策. 连续排水边界条件下饱和软土一维大变形固结解析解[J]. 中南大学学报(自然科学版), 2020, 51(5): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm

    JIANG Wenhao, ZHAN Liangtong, YANG Ce. Analytical solution for one-dimensional large strain consolidation of saturated soft soils with continuous drainage boundary[J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202005013.htm

    [28]

    JEYAKANTHAN V, GNANENDRAN C T, LO S C R. Laboratory assessment of electro-osmotic stabilization of soft clay[J]. Canadian Geotechnical Journal, 2011, 48(12): 1788-1802.

    [29]

    JONES C J F P, LAMONT-BLACK J, GLENDINNING S. Electrokinetic geosynthetics in hydraulic applications[J]. Geotextiles and Geomembranes, 2011, 29(4): 381-390.

  • 期刊类型引用(1)

    1. 王华杰. 电势作用下非饱和土水分迁移量关系探究. 科学技术创新. 2024(24): 99-102 . 百度学术

    其他类型引用(4)

图(11)  /  表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  53
  • PDF下载量:  55
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-12-26
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回