Study and construction of landing test site for Mars rover
-
摘要: 火星距地球遥远,通信延迟约为20 min,且表面地形复杂,遍布岩石及斜坡等障碍物,探测器着陆需自主完成一系列动作,不可控因素多,难度大。为确保火星探测器安全着陆,采用“材料学+地貌学+岩土力学”多学科交叉的方法来模拟火星地表重要特性,在此基础上为保证场地建设及使用经济合理、保护环境和试验工况的快速布置等需求,采用“区域组合+移固组合”的方法对试验场地进行研究并建造。随后分别对该着陆试验场地貌区和着陆区进行激光、微波特性和承载力特性相关测试。测试结果表明:试验场整体布局合理,各区域可拆卸设备质轻易搬运,便于快速进行不同试验工况设置;地貌区激光和微波反射及散射特性与着陆区的基本物理力学特性等相关测试结果与真实火星表面目标值吻合程度较好;本试验场地已为“天问一号”相关避障和着陆测试提供服务,助力“天问一号”成功登陆火星乌托邦平原预选着陆区。
-
关键词:
- 火星 /
- 火星地貌 /
- TJ-M1模拟火星壤 /
- 物理力学特性 /
- 着陆试验场研造
Abstract: Mars is far away from the Earth, the communication delay is about 20 minutes, and the surface terrain is complex, which is covered with rock, slope, and other obstacles. The Mars rover needs to land on Mars automatically, accompanied by many uncontrollable factors. To guarantee the Martian rover landing safely, a method with multidisciplinary intersection including materials science, geomorphology and geomechanics is employed to simulate the main characteristics of the Martian surface. On this basis, to ensure the test site constructed and used economically, environmentally friendly and re-arranged in different cases quickly, a method with a combination of mobile and fixed regions is used to study and then construct the landing test site in different functional regions. Thereafter, the laser and microwave characteristics and the bearing capacity are measured in geomorphology and landing areas respectively. The test results show that the layout of the test site is reasonable, and the detachable equipments in each area are easy to handle so as to set the various test conditions effectively. They have good agreement with the target values in the laser and microwave tests on geomorphology area and those in the bearing capacity tests in the landing area. This test site has been used for "Tianwen-1" program with the aim of obstacle avoidance and landing safely, which has paved a way for Tianwe-1 probe to successfully land on the pre-selected landing zone in the Utopian Plain of Mars. -
致谢: 衷心感谢天津大学北洋能源与环境岩土工程团队成员,航天科技集团五院及北京空间机电研究所相关人员在场地建造及相关测试中的无私帮助。
-
探测器 土壤类型 体密度/(kg·m-3) 黏聚力/kPa 内摩擦角/(°) 承载强度/kPa 勇气号 表层土壤 1200~1500 1~15 ~20 5~200 机遇号 表层土壤 ~1300 1~5 ~20 ~80 火星探路者 堆积物 1285~1518 0.21 34.3 — 火星探路者 块状物质 1422~1636 0.17±0.18 37±2.6 — 海盗一号 堆积物 1150±150 1.6±1.2 18±2.4 — 海盗一号 块状物质 1600±400 5.1±2.7 30.8±2.4 — 海盗二号 壳状至块状物质 1400±200 1.1±0.8 34.5±4.7 — 表 2 TJ-M1模拟火星壤物理力学性能及符合度
Table 2 Goodness of fitting of physical and mechanical properties of TJ-M1 Martian regolith simulant
参量 密度/(kg·m-3) 黏聚力/kPa 内摩擦角/(°) 承载强度/kPa 目标值 1350~1600 0.24~1 35~40 3~60 实测值 1370 0.28 35.2 33.48 符合度 100% 100% 100% 100% 表 3 500~800 nm和1047~1064 nm光谱反射率
Table 3 Spectral reflectivities of wavelength between 500 to 800 nm and between 1047 to 1064 nm
检测波长/nm 检测结果 检测波长/nm 检测结果 500 0.349 1052 0.291 540 0.347 1053 0.291 580 0.345 1054 0.290 620 0.342 1055 0.290 660 0.340 1056 0.289 700 0.338 1057 0.289 740 0.331 1058 0.289 780 0.325 1059 0.289 800 0.322 1060 0.289 1047 0.290 1061 0.288 1048 0.291 1062 0.289 1049 0.291 1063 0.289 1050 0.290 1064 0.289 1051 0.290 — — 表 4 不同频率和入射角度微波的后向散射系数
Table 4 Backscattering coefficients of microwave with different frequencies and incident angles
测试频率/GHz 入射角度/(°) 检测结果/dB 测试频率/GHz 入射角度/(°) 检测结果/dB 16.0 0 -10.2 33.7 40 -7.2 10 -9.9 50 -5.2 20 -9.6 60 -7.8 30 -9.2 70 -10.7 40 -8.4 34.7 0 -8.9 50 -7.6 10 -9.8 60 -8.8 20 -9.4 70 -9.6 30 -9.5 32.7 0 -9.4 40 -6.7 10 -11.0 50 -4.5 20 -10.8 60 -7.7 30 -10.5 70 -10.8 40 -7.7 35.7 0 -8.6 50 -5.6 10 -9.5 60 -7.8 20 -9.0 70 -10.5 30 -9.1 33.7 0 -9.2 40 -6.2 10 -10.2 50 -6.2 20 -10.0 60 -7.9 30 -10.0 70 -10.9 表 5 着陆区TJ-M1模拟火星壤物理力学性能及符合度
Table 5 Goodness of fitting of physical and mechanical properties of TJ-M1 Martian regolith simulant of landing site
参量 体密度/(kg·m-3) 黏聚力/kPa 内摩擦角/(°) 承载强度/kPa 目标值 1350~1600 0.24~1 35~40 3~60 实测平均值 1363 0.50 33.01 54.3 符合度 100% 100% 94.3% 100% -
[1] 欧阳自远, 邹永廖. 火星科学概论[M]. 上海: 上海科技教育出版社, 2015. OUYANG Ziyuan, ZOU Yongliao. Introduction to Mars Science[M]. Shanghai: Shanghai Scientific & Technological Education Publishing House, 2015. (in Chinese)
[2] 曲少杰, 呼延奇, 饶炜, 等. 火星环境对着陆探测任务的影响及设计考虑[J]. 航天器环境工程, 2021, 38(3): 240-247. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202103003.htm QU Shaojie, HUYAN Qi, RAO Wei, et al. Effects of Mars environment on landing probe mission and related design considerations[J]. Spacecraft Environment Engineering, 2021, 38(3): 240-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ202103003.htm
[3] 饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报, 2016, 3(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201602004.htm RAO Wei, SUN Zezhou, MENG Linzhi, et al. Analysis and design for the Mars entry, descent and landing mission[J]. Journal of Deep Space Exploration, 2016, 3(2): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKTC201602004.htm
[4] 赵铮, 高甲, 姜毅. 火星着陆巡视器悬停、避障试验风险管理实践[J]. 经贸实践, 2018(18): 292-294. https://www.cnki.com.cn/Article/CJFDTOTAL-JMSA201818210.htm ZHAO Zheng, GAO Jia, JIANG Yi. Risk management practice of hovering and obstacle avoidance test of Mars landing patrol[J]. Economic & Trade, 2018(18): 292-294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JMSA201818210.htm
[5] 王宇虹. 中国首次火星探测任务着陆器悬停避障试验完成[J]. 导弹与航天运载技术, 2019(6): 63. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201906014.htm WANG Yuhong. China's first Mars exploration mission lander hovering obstacle avoidance test completed[J]. Missiles and Space Vehicles, 2019(6): 63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201906014.htm
[6] 我国首次火星探测任务着陆火星取得圆满成功[J]. 国防科技工业, 2021(5): 12. China's first Mars exploration mission landed on Mars with complete success[J]. Defence Science & Technology Industry, 2021(5): 12. (in Chinese)
[7] 蒋明镜, 李立青. TJ-1模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214. http://cge.nhri.cn/cn/article/id/13903 JIANG Mingjing, LI Liqing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214. (in Chinese) http://cge.nhri.cn/cn/article/id/13903
[8] HERKENHOFF K E, SQUYRES S W, ARVIDSON R, et al. Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager[J]. Science (New York, N Y), 2004, 305(5685): 824-826.
[9] ARVIDSON R E, BELL J F III, BELLUTTA P, et al. Spirit Mars Rover Mission: overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater[J]. Journal of Geophysical Research, 2010, 115: E00F03.
[10] SIEBACH K, ARVIDSON R, CABROL N. Recent spirit results: microscopic imager analysis of particle properties in scamander crater, west of home plate[C]// Lunar and Planetary Science Conference. 2010.
[11] GOETZ W, PIKE W T, HVIID S F, et al. Microscopy analysis of soils at the Phoenix landing site, Mars: classification of soil particles and description of their optical and magnetic properties[J]. Journal of Geophysical Research, 2010, 115: E00E22.
[12] MOORE H J, BICKLER D B, CRISP J A, et al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research: Planets, 1999, 104(E4): 8729-8746.
[13] MOORE H J, JAKOSKY B M. Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials[J]. Icarus, 1989, 81(1): 164-184.
[14] ARVIDSON R E, ANDERSON R C, BARTLETT P, et al. Localization and physical properties experiments conducted by Spirit at Gusev Crater[J]. Science (New York, N Y), 2004, 305(5685): 821-824.
[15] ARVIDSON R E, ANDERSON R C, BARTLETT P, et al. Localization and physical property experiments conducted by Opportunity at Meridiani Planum[J]. Science (New York, N Y), 2004, 306(5702): 1730-1733.
[16] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[17] ALLEN C C, JAGER K M, MORRIS R V, et al. JSC MARS-1: a Martian soil simulant[C]// Space 98 Albuquerque, Reston, VA: 1998: 469-476.
[18] MUSTARD J F, BELL J F III. New composite reflectance spectra of Mars from 0.4 to 3.14 μm[J]. Geophysical Research Letters, 1994, 21(5): 353-356.
[19] 建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射比及有关窗玻璃参数的测定: GB/T 2680—1994[S]. 北京: 中国标准出版社, 1994. Determination of Light Transmittance, Solar Direct Transmittance, Total Solar Energy Transmittance and Ultraviolet Transmittance for Glass in Building and Related Glazing Factors: GB/T 2680—1994[S]. Beijing: Standards Press of China, 1994. (in Chinese)
[20] GOLDSTEIN R M, GILLMORE W F. Radar observations of Mars[J]. Science, 1963, 141(3586): 1171-1172.
[21] BARON J E, SIMPSON R A, TYLER G L, et al. Estimation of Mars radar backscatter from measured surface rock populations[J]. Journal of Geophysical Research: Planets, 1998, 103(E10): 22695-22712.
[22] CAMPBELL B A. Radar backscatter from Mars: properties of rock-strewn surfaces[J]. Icarus, 2001, 150(1): 38-47.
[23] SEU R, BICCARI D, OROSEI R, et al. SHARAD: The MRO 2005 shallow radar[J]. Planetary and Space Science, 2004, 52(1/2/3): 157-166.
[24] LIU C, YE H X, JIN Y Q. Simulation of radar echoes from Mars' surface/subsurface and inversion of surface media parameters[J]. Radio Science, 2014, 49(7): 473-484.
[25] 室内场缩比目标雷达散射截面测试方法: GJB 5022—2001[S]. 北京: 国防工业出版社, 2001. Method for Measurement of Radar Cross of Scale Target Indoor Range: GJB 5022—2001[S]. Beijing: National Defence Industry Press, 2001. (in Chinese)
[26] 雷达吸波材料反射率测试方法: GJB2038A—2011[S]. 北京: 国防工业出版社, 2011. Methods for Measurement of Reflectivity of Radar Absorbing Material: GJB2038A—2011[S]. Beijing: National Defence Industry Press, 2011. (in Chinese)
[27] 蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783-1789. doi: 10.11779/CJGE202010002 JIANG Mingjing, LÜ Lei, LI Liqing, et al. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783-1789. (in Chinese) doi: 10.11779/CJGE202010002
-
期刊类型引用(1)
1. 潘鹏志,王兆丰,封雨捷,李雨芯. 深空探测任务中岩土力学若干问题及研究进展. 岩土力学. 2024(11): 3153-3172 . 百度学术
其他类型引用(0)