Elasto-plastic variational solution for vertically loaded noncylindrical piles
-
摘要: 现有计算理论无法严格考虑弹塑性土中竖向受荷横截面异形桩的异形效应。针对该问题,基于虚功原理推导出桩-弹塑性土模型的控制方程,采用保角变换技术克服了复杂边界条件控制方程求解问题,结合双曲形D-P本构模型的本构积分算法获得弹塑性土中竖向受荷横截面异形桩的半解析算法,建立了能够考虑横截面异形效应的竖向受荷横截面异形桩荷载传递理论模型。将理论模型的预测结果与有限元计算结果对比,验证了理论模型的可靠性和计算的高效性。最后,通过参数分析探讨了横截面异形效应对荷载沉降曲线的影响,结果表明:在正常工作荷载下,横截面异形效应对桩顶沉降影响不大;横截面异形效应主要对桩的极限承载力大小产生影响。Abstract: The existing analytical or semi-analytical methods cannot rigorously capture the geometrical effects of noncylindrical piles in elasto-plastic soils. To solve this issue, based on the principle of virtual work, the governing equations for the pile-soil system are derived. Solving the governing equation with a complex boundary is overcome by the conformal mapping technique. A semi-analytical algorithm for the vertically loaded noncylindrical piles in elasto-plastic soils is developed by combing the use of integral algorithm for the hyperbolic D-P constitutive model. A general theoretical model for the load transfer of the vertically loaded noncylindrical piles considering the geometrical effects is proposed. The reliability and efficiency of the proposed semi-analytical method is validated by comparing the predicted results with those of FEM. Finally, detailed parametric studies are conducted to investigate the geometrical effects on the influences of load-settlement curve. It is found that the non-circular cross-section has insignificant influences on the settlement of the pile head under working loads, which principally affects the magnitude of the ultimate bearing capacity of the pile.
-
-
-
[1] LI X C, ZHOU H, LIU H L, et al. Three‐dimensional analytical continuum model for axially loaded noncircular piles in multilayered elastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(18): 2654-2681. doi: 10.1002/nag.3281
[2] SEED H B, REESE L C. The action of soft clay along friction piles[J]. Transactions of the American Society of Civil Engineers, 1957, 122(1): 731-754. doi: 10.1061/TACEAT.0007501
[3] MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195-202. doi: 10.1063/1.1745385
[4] POULOS H G, DAVIS E H. The settlement behaviour of single axially loaded incompressible piles and piers[J]. Géotechnique, 1968, 18(3): 351-371. doi: 10.1680/geot.1968.18.3.351
[5] HIRAI H. Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(12): 1298-1320. doi: 10.1002/nag.2270
[6] 雷国辉, 洪鑫, 施建勇. 壁板桩承载特性的近似三维分析[J]. 岩土力学, 2004, 25(4): 590-594, 600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200404020.htm LEI Guohui, HONG Xin, SHI Jianyong. Approximate three-dimensional analysis of load-carrying behaviour of barrettes[J]. Rock and Soil Mechanics, 2004, 25(4): 590-594, 600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200404020.htm
[7] VALLABHAN C V G, MUSTAFA G. A new model for the analysis of settlement of drilled piers[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(2): 143-152. doi: 10.1002/(SICI)1096-9853(199602)20:2<143::AID-NAG812>3.0.CO;2-U
[8] SHEN W Y, CHOW Y K, YONG K Y. A variational approach for vertical deformation analysis of pile group[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(11): 741-752. doi: 10.1002/(SICI)1096-9853(199711)21:11<741::AID-NAG898>3.0.CO;2-D
[9] SHEN W Y, CHOW Y K, YONG K Y. Variational solution for vertically loaded pile groups in an elastic half-space[J]. Géotechnique, 1999, 49(2): 199-213. doi: 10.1680/geot.1999.49.2.199
[10] LEE K M, XIAO Z R. A new analytical model for settlement analysis of a single pile in multi-layered soil[J]. Soils and Foundations, 1999, 39(5): 131-143. doi: 10.3208/sandf.39.5_131
[11] SEO H, PREZZI M. Analytical solutions for a vertically loaded pile in multilayered soil[J]. Geomechanics and Geoengineering, 2007, 2(1): 51-60. doi: 10.1080/17486020601099380
[12] BASU D, PREZZI M, SALGADO R, et al. Settlement analysis of piles with rectangular cross sections in multi-layered soils[J]. Computers and Geotechnics, 2008, 35(4): 563-575. doi: 10.1016/j.compgeo.2007.09.001
[13] TEHRANI F S, SALGADO R, PREZZI M. Analysis of axial loading of pile groups in multilayered elastic soil[J]. International Journal of Geomechanics, 2016, 16(2): 04015063. doi: 10.1061/(ASCE)GM.1943-5622.0000540
[14] 雷国辉, 詹金林, 洪鑫. 壁板桩群桩竖直荷载沉降关系的变分法分析[J]. 岩土力学, 2007, 28(10): 2071-2076. doi: 10.3969/j.issn.1000-7598.2007.10.012 LEI Guohui, ZHAN Jinlin, HONG Xin. Variational analysis of load-settlement relationship of vertically loaded barrette groups[J]. Rock and Soil Mechanics, 2007, 28(10): 2071-2076. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.10.012
[15] 周航, 李籼橙, 刘汉龙, 等. 均质土中竖向受荷X形混凝土桩的三维弹性变分解[J]. 岩土力学, 2021, 42(4): 1012-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104014.htm ZHOU Hang, LI Xiancheng, LIU Hanlong, et al. Three-dimensional variational elastic solution for axially loaded X-section cast-in-place concrete pile in homogeneous soil[J]. Rock and Soil Mechanics, 2021, 42(4): 1012-1024. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104014.htm
[16] JEONG S, LEE J, LEE C J. Slip effect at the pile-soil interface on dragload[J]. Computers and Geotechnics, 2004, 31(2): 115-126. doi: 10.1016/j.compgeo.2004.01.009
[17] 吕亚茹, 丁选明, 刘汉龙, 等. 刚性荷载下现浇X形桩复合地基桩侧摩阻力数值分析[J]. 岩土工程学报, 2012, 34(11): 2134-2140. http://cge.nhri.cn/cn/article/id/14886 LÜ Yaru, DING Xuanming, LIU Hanlong, et al. Numerical analysis of side resistance of composite foundation with X-section cast-in-place concrete piles under rigid load[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2134-2140. (in Chinese) http://cge.nhri.cn/cn/article/id/14886
[18] ZHANG Q Q, FENG R F, YU Y L, et al. Simplified approach for prediction of nonlinear response of bored pile embedded in sand[J]. Soils and Foundations, 2019, 59(5): 1562-1578. doi: 10.1016/j.sandf.2019.07.011
[19] HAN F, SALGADO R, PREZZI M. Nonlinear analyses of laterally loaded piles-A semi-analytical approach[J]. Computers and Geotechnics, 2015, 70: 116-129. doi: 10.1016/j.compgeo.2015.07.009
[20] GUPTA B K, BASU D. Nonlinear solutions for laterally loaded piles[J]. Canadian Geotechnical Journal, 2020, 57(10): 1566-1580. doi: 10.1139/cgj-2019-0341
[21] 周永强, 盛谦, 刘芳欣, 等. 一种修正的Drucker-Prager屈服准则[J]. 岩土力学, 2016, 37(6): 1657-1664. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606016.htm ZHOU Yongqiang, SHENG Qian, LIU Fangxin, et al. A study of modified Drucker-Prager yield criterion[J]. Rock and Soil Mechanics, 2016, 37(6): 1657-1664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606016.htm
[22] ABBO A J, SLOAN S W. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers & Structures, 1995, 54(3): 427-441.
[23] CHEN H H, LI L, LI J P, et al. A rigorous elastoplastic load-transfer model for axially loaded pile installed in saturated modified Cam-clay soils[J]. Acta Geotechnica, 2022, 17(2): 635-651. doi: 10.1007/s11440-021-01248-z
[24] ZHOU H, LIU H L, YUAN J R. A novel analytical approach for predicting the noncylindrical pile penetration-induced soil displacement in undrained soil by combining use of cavity expansion and strain path methods[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(11): 1270-1305.
[25] 詹云刚, 袁凡凡, 栾茂田. 纯摩擦型岩土介质本构积分算法及其在ABAQUS中开发应用[J]. 岩土力学, 2007, 28(12): 2619-2623, 2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712029.htm ZHAN Yungang, YUAN Fanfan, LUAN Maotian. Integration algorithm of constitutive equation for cohesionless-frictional geomaterial and its application to ABAQUS[J]. Rock and Soil Mechanics, 2007, 28(12): 2619-2623, 2628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200712029.htm
[26] RANDOLPH M F. The response of flexible piles to lateral loading[J]. Géotechnique, 1981, 31(2): 247-259. http://www.onacademic.com/detail/journal_1000034855799910_85ab.html
-
期刊类型引用(12)
1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 . 百度学术
2. 龙军,彭搏程. 基于桩周土围限失效的筋箍料粒桩复合地基承载力计算. 公路工程. 2025(01): 138-143 . 百度学术
3. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 . 百度学术
4. 王嘉鑫,纪明昌,郑俊杰,郑烨炜. 软土地基中包裹碎石桩地震动力响应数值模拟研究. 土木与环境工程学报(中英文). 2023(05): 58-65 . 百度学术
5. 郝耀虎,周杨,王闫超,刘少炜. 基于透明土技术的加筋碎石桩承载特性试验研究. 铁道科学与工程学报. 2023(12): 4582-4591 . 百度学术
6. 黄河,罗正东,李检保,罗彪. 竹筋格栅套筒加筋碎石桩承载力分析. 人民长江. 2022(06): 193-197 . 百度学术
7. 袁涌筌,赵明华,杨超炜,肖尧. 循环荷载下筋箍碎石桩复合地基动力特性数值分析. 湖南大学学报(自然科学版). 2022(11): 198-205 . 百度学术
8. 臧一平,刘聪. 考虑鼓胀和自重的散体材料桩复合地基承载力分析. 地基处理. 2021(06): 451-457 . 百度学术
9. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 . 百度学术
10. 李建喜,康超,李玉峰. 碎石桩处理软土地基的现状及趋势分析. 北方建筑. 2020(03): 60-63+67 . 百度学术
11. 邱梦瑶,陈树培,唐亮,凌贤长,张效禹,李雪伟,刘书幸. 加筋碎石桩复合饱和砂土地基抗液化性能评价方法. 地震研究. 2020(03): 554-562+603 . 百度学术
12. 姚志伟,张永艳. 筏板基础下碎石桩改良软土地基性能的数值研究. 河北工业科技. 2020(05): 359-365 . 百度学术
其他类型引用(13)