Variation characteristics of mineralizing reaction along seepage path in bio-grouting-reinforced silt
-
摘要: 加固土体不均匀是制约微生物注浆固土技术应用的重要因素。为揭示微生物注浆固化粉土时矿化反应过程沿渗流路径的变化规律,采用微生物一维注浆固化粉土试验,分析在不同渗径长度条件下,细菌生物量、pH值、离子浓度和碳酸钙生成量等矿化反应参数沿渗流方向的变化特性。结果表明,土体中的游离细菌生物量随着相对渗径长度增大呈指数衰减。孔隙液的pH值、游离钙离子和铵根离子浓度随相对渗径长度增大呈抛物线变化。固化土中胶结碳酸钙生成量随相对渗径长度增大而逐渐衰减,与游离细菌生物量线性正相关,并随胶结液浓度增大而增大。细菌生物量的沿程变化是影响微生物固土胶结物分布的根本原因。提出了以归一化相对渗径长度为基本参量的碳酸钙生成量沿程分布的预测公式,预测值与试验结果具有较好的一致性,可适用于不同渗径长度的微生物注浆固化粉土效果的预测。该研究能够为微生物注浆加固粉土地基的设计与施工提供参考。Abstract: The inhomogeneity of reinforced soils is an important factor restricting the application of bio-grouting-reinforced soil technology. In order to investigate the variation characteristics of mineralizing reaction process along seepage path, one-dimensional bio-grouting tests are adopted to treat silt samples. Evolution of mineralizing reaction parameters such as microbial biomass, pH value and ion concentration, calcium carbonate production along the seepage direction are assessed for different seepage path lengths. The results show that the distribution of free bacterial biomass in the soils with different seepage path lengths has a normalized characteristic, and it decays exponentially with the increase of the relative seepage path length. The pH value, free calcium ion and ammonium ion concentration of the pore fluid change parabolicly with the increase of the relative seepage path length. The calcium carbonate production decreases with the increase of the relative seepage path length, is linearly positively correlated with the free bacterial biomass, and increases with the increase of the cementing solution concentration. A formula for predicting the distribution of calcium carbonate in the silt solidified by the bio-grouting is proposed based on the normalized relative seepage path length. The predicted values are in good agreement with the test results. The formula can be used to predict the reinforced effects of the bio-grouting-treated silt with different seepage path lengths. The research results may provide a reference for the design and construction of bio-grouting-reinforced silt ground.
-
Keywords:
- bio-grouting /
- silt /
- mineralization reaction /
- seepage path length
-
-
-
[1] ANBU P, KANG C H, SHIN Y J, et al. Formations of calcium carbonate minerals by bacteria and its multiple applications[J]. SpringerPlus, 2016, 5: 250. doi: 10.1186/s40064-016-1869-2
[2] YU T, SOULI H, PÉCHAUD Y, et al. Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement-a review[J]. European Journal of Environmental and Civil Engineering, 2022, 26(6): 2218-2233. doi: 10.1080/19648189.2020.1755370
[3] LIU H L XIAO P, XIAO Y, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14.
[4] EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): W07519.
[5] MARTINEZ B C, DEJONG J T, GINN T R. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow[J]. Computers and Geotechnics, 2014, 58: 1-13. doi: 10.1016/j.compgeo.2014.01.013
[6] CHENG X, YANG Z, ZHANG Z, WANG H. Modeling of microbial induced carbonate precipitation in porous media[J]. Journal of Pure and Applied Microbiology, 2013, 7(1): 449-458.
[7] 陈婷婷, 程晓辉, 郭红仙. 基于数值模拟的砂柱微生物注浆影响因素分析[J]. 土木工程学报, 2018, 51(6): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201806012.htm CHEN Tingting, CHENG Xiaohui, GUO Hongxian. Influencing factors of bio-grouting precipitation in sand column based on numerical simulation analysis[J]. China Civil Engineering Journal, 2018, 51(6): 111-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201806012.htm
[8] WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
[9] 荣辉. 微生物水泥的研制及其胶结机理[D]. 南京: 东南大学, 2014. RONG Hui. Development of Cement and its Cementing Mechanism[D]. Nanjing: Southeast University, 2014. (in Chinese)
[10] 温智力, 杨建贵, 马昌龙, 等. 微生物诱导碳酸钙加固砂土的尺寸效应[J]. 扬州大学学报(自然科学版), 2020, 23(2): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ202002012.htm WEN Zhili, YANG Jiangui, MA Changlong, et al. Size effect research on sand reinforcement treated with microbial induced calcite precipitation[J]. Journal of Yangzhou University (Natural Science Edition), 2020, 23(2): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ202002012.htm
[11] 许朝阳, 张莉. 微生物改性对粉土强度的影响[J]. 建筑科学, 2009, 25(5): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200905012.htm XU Zhaoyang, ZHANG Li. The effect of microbes on strength of silt[J]. Building Science, 2009, 25(5): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200905012.htm
[12] 杨宇烨, 赵志峰. 胶结液浓度对微生物注浆加固海相粉土的影响[J]. 林业工程学报, 2019, 4(4): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201904023.htm YANG Yuye, ZHAO Zhifeng. Study on the influence of cementation solution concentration on reinforcement of marine silt by microbial grouting[J]. Journal of Forestry Engineering, 2019, 4(4): 143-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201904023.htm
[13] 赵志峰, 邵光辉. 微生物诱导碳酸钙沉积加固海相粉土的试验研究[J]. 应用基础与工程科学学报, 2021, 29(1): 231-238. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101020.htm ZHAO Zhifeng, SHAO Guanghui. Experimental study on marine silt reinforcement by microbial induced calcium precipitation[J]. Journal of Basic Science and Engineering, 2021, 29(1): 231-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101020.htm
[14] 邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201901020.htm SHAO Guanghui, HOU Min, LIU Peng. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 2019, 4(1): 128-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201901020.htm
[15] MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
[16] SOON N W, LEE L M, KHUN T C, et al. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 4014006.
[17] 韩智光, 程晓辉. 营养盐对微生物加固可液化砂土效果的探讨[J]. 工业建筑, 2015, 45(7): 19-22, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201507004.htm HAN Zhiguang, CHENG Xiaohui. Nutritive salt's impact on microorganism strengthening liquefiable sandy soil[J]. Industrial Construction, 2015, 45(7): 19-22, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201507004.htm
-
期刊类型引用(1)
1. 裘友强,张留俊,刘洋,刘军勇,尹利华. “双碳”背景下公路软土地基处理技术研究进展. 水利水电技术(中英文). 2025(01): 113-131 . 百度学术
其他类型引用(4)