One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application
-
摘要: 建立了污染物在对流、分子扩散和热扩散作用下压实黏土衬垫(CCL)的一维运移解析模型,并获得解析解。无量纲设计曲线表明对流作用对污染物在CCL中运移的影响至关重要;然而随着热扩散作用的增强,对流作用的影响会有所减弱。参数敏感性分析结果表明,当渗滤液水头达到3 m时,10 a的底部浓度和通量分别是无对流情况下的3.5~4.9倍和5.9~15.1倍;当热扩散作用较强(M=-5)时,10 a底部浓度和通量是无热扩散作用下的2.6倍和3.5倍;温度升高会增大土的渗透系数,从而影响污染物在CCL中的运移,在衬垫系统设计过程中应予以考虑。提出了衬垫厚度设计简化计算方法,并以西安江村沟填埋场为例,对CCL进行了简化设计;结果表明:若要保证渗滤液中的Cl-和As击穿CCL的时间大于50 a,则CCL的厚度分别需要不小于11.16 m和1.75 m。Abstract: A one-dimensional analytical model as well as the analytical solution for the contaminant transport in compacted clay liner (CCL) is proposed. The dimensionless design curves show that the advection has significant effects on the contaminant transport in CCL. However, with the increases of thermal diffusion, the effects of the advection will decrease. The results of parameter sensitive analysis show when the leachate head reaches 3 m, the 10-year bottom concentration and flux increase by the factors of 3.5~4.9 and 5.9~15.1, respectively, compared with those without the advection. When the thermal diffusion is great enough (M=-5), the bottom concentration and flux increase by the factors of 2.6 and 3.5, respectively, compared with those without the thermal diffusion. The effects of the temperature on the permeability coefficient of CCL should be considered in the design of landfill clay liners. A simplified method for determination of the thickness of the landfill liner is proposed. The simplified method is used to design the liner system at the Jiangcungou Landfill site in Xi 'an. When considering the chloride (Cl-) and arsenic (As) as the index contaminants, the breakthrough time will be longer than 50 years in the case with the thickness of CCL larger than 11.16 m and 1.75 m, respectively.
-
Keywords:
- analytical model /
- temperature /
- thermal diffusion /
- leachate /
- simplified design
-
-
表 1 污染物在CCL中运移的参数取值表
Table 1 Parameters of contaminant transport in CCL
参数 符号 取值 渗滤液中污染物浓度 C0/(mg·L-1) 100 渗滤液水头 hw/m 0.3/3.0 有效扩散系数 D*/(m2·s-1) 4×10-10 黏土厚度 L /m 2.0 索雷特系数 ST /K-1 3×10-2 黏土层孔隙度 n 0.4 黏土层渗透系数 k /(m·s-1) 1×10-9 阻滞因子 Rd 1.0 黏土层两端温差 ΔT /K -50 表 2 不同温度污染物在膨润土中运移的参数取值
Table 2 Transport parameters for contaminant in bentonite liner under different temperatures
膨润土平均温度
T0/℃膨润土渗透系数
k/(m·s-1)渗滤液水头
hw/m有效扩散系数
D*/(m2·s-1)膨润土厚度
L/m30 2.12×10-13 0.3 3.5×10-12 0.1 60 4.29×10-13 90 6.48×10-13 -
[1] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001 CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
[2] LEI M F, LIN D Y, LIU J W, et al. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment[J]. AIP Advances, 2018, 8(3): 035029. doi: 10.1063/1.5027540
[3] YU C, LIU J F, MA J J, et al. Study on transport and transformation of contaminant through layered soil with large deformation[J]. Environmental Science and Pollution Research, 2018, 25(13): 12764-12779. doi: 10.1007/s11356-018-1325-7
[4] PU H F, FOX P J, SHACKELFORD C D. Assessment of consolidation-induced contaminant transport for compacted clay liner systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 04015091. doi: 10.1061/(ASCE)GT.1943-5606.0001426
[5] 田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009 TIAN Gailei, ZHANG Zhihong. The coupled model of contaminant diffusion, osmosis and consolidation in soil considering thermal effect[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
[6] YAN H X, XIE H J, WU J W, et al. Analytical model for transient coupled consolidation and contaminant transport in landfill liner system[J]. Computers and Geotechnics, 2021, 138: 104345. doi: 10.1016/j.compgeo.2021.104345
[7] YU C, WANG H, FANG D F, et al. Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method[J]. Journal of Hydrology, 2018, 565: 422-428. doi: 10.1016/j.jhydrol.2018.08.041
[8] STOPPIELLO M G, LOFRANO G, CAROTENUTO M, et al. A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils[J]. Sustainability, 2020, 12(7): 2949. doi: 10.3390/su12072949
[9] DING X H, FENG S J, ZHENG Q T, et al. A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 128: 103816. doi: 10.1016/j.compgeo.2020.103816
[10] 谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008. XIE Haijian. A Study on Contaminant Transport in Layered Media and the Performance of Landfill Liner Systems[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[11] 陈云敏, 谢海建, 柯瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521-524. doi: 10.3321/j.issn:1000-4548.2006.04.018 CHEN Yunmin, XIE Haijian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521-524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.018
[12] 张文杰, 赵培, 贾文强. 一维对流-扩散试验各种边界条件及其统一形式解析解[J]. 岩土力学, 2015, 36(10): 2759-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510003.htm ZHANG Wenjie, ZHAO Pei, JIA Wenqiang. Boundary conditions of one-dimensional convection- diffusion column tests and unified analytical solution[J]. Rock and Soil Mechanics, 2015, 36(10): 2759-2764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510003.htm
[13] HARRIS A P F, MCDERMOTT C I, KOLDITZ O, et al. Modelling groundwater flow changes due to thermal effects of radioactive waste disposal at a hypothetical repository site near Sellafield, UK[J]. Environmental Earth Sciences, 2015, 74(2): 1589-1602. doi: 10.1007/s12665-015-4156-6
[14] PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448-458. doi: 10.1016/j.wasman.2020.10.004
[15] XIE H J, ZHANG C H, SEDIGHI M, et al. An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media[J]. Computers and Geotechnics, 2015, 69: 329-337. doi: 10.1016/j.compgeo.2015.06.012
[16] THOMAS H R, SEDIGHI M, VARDON P J. Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions[J]. Geotechnical and Geological Engineering, 2012, 30(4): 841-857. doi: 10.1007/s10706-012-9502-9
[17] SEDIGHI M, THOMAS H, VARDON P. Modelling thermal impacts on reactive transport processes related to multicomponent chemicals in compacted clays[C]//2nd International Symposium on Computational Geomechanics(ComGeo Ⅱ). Dubrovnik, 2011: 538-546.
[18] THOMAS H R, SEDIGHI M. Thermal Effects on Chemical Diffusion in Multicomponent Ionic Systems[M]//Engineering Geology for Society and Territory-Volume 6. Cham: Springer International Publishing, 2014: 525-528.
[19] FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590-601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)
[20] CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2d ed. Oxford: Clarendon Press, 1959.
[21] 张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848. doi: 10.11779/CJGE202010009 ZHANG Chunhua, WU Jiawei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. (in Chinese) doi: 10.11779/CJGE202010009
[22] XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
[23] HAO Z S, BARLAZ M A, DUCOSTE J J. Finite-element modeling of landfills to estimate heat generation, transport, and accumulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020134.
[24] PARK S, YOON S, KWON S, et al. Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material[J]. Progress in Nuclear Energy, 2021, 137: 103759.
[25] FOX P M, TINNACHER R M, CHESHIRE M C, et al. Effects of bentonite heating on U(VI)adsorption[J]. Applied Geochemistry, 2019, 109: 104392.
[26] ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation[J]. Science of the Total Environment, 2014, 470/471: 290-298.
[27] 何晓晓. 江村沟垃圾渗滤液尾水的深度处理研究[D]. 西安: 长安大学, 2013. HE Xiaoxiao. Deep Research on the Tail Water of Leachate from Jiang Cungou MSW Landfill[D]. Xi'an: Changan University, 2013. (in Chinese)
[28] 陈云敏, 刘晓成, 徐文杰, 等. 填埋生活垃圾稳定化特征与可开采性分析: 以中国第一代卫生填埋场为例[J]. 中国科学: 技术科学, 2019, 49(2): 199-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm CHEN Yunmin, LIU Xiaocheng, XU Wenjie, et al. Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica(Technologica), 2019, 49(2): 199-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm
[29] 张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018. ZHANG Chunhua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and Its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[30] ROWE R. Short-and long-term leakage through composite liners: The 7th Arthur Casagrande Lecture 1[J]. Canadian Geotechnical Journal, 2012, 49(2): 141-169.