Performance evaluation of shield tail brushes based on compression and grease escape tests
-
摘要: 盾尾密封失效事故时有发生,严重时易造成了重大涌水涌砂安全事故,已经引起工程界与学术界的高度关注。基于盾尾刷动态压缩试验和盾尾密封油脂逃逸试验结果及分析,结果表明:①动态压缩试验测试结果能较好反映盾尾刷弹塑性力学性能,大幅度节约试验时间;②随着盾尾间隙不断减小,盾尾刷贴合力、弹性系数不断增大,塑性变形占比不断增大、弹性变形占比不断减小。盾尾间隙为110 mm时弹性变形占比为90%,盾尾间隙压缩至50 mm时弹性变形占比降低到60%;③建立了盾尾间隙、盾尾油脂逃逸量与盾尾刷贴合力关系图,获得了盾尾密封系统的工作安全区域,可对盾尾密封状态有效性进行评估。建立的盾尾刷密封性能评价方法,为盾尾刷性能评价及检测提供了参考。Abstract: The failures of shield tail sealing have occurred from time to time, which may result in water and sand-gushing accidents in severe cases. This phenomenon has attracted great attention from the engineering and academic circles. According to the tests of dynamic compression and sealing grease escape of shield tail brushes, the results show that: (1) The dynamic compression tests can reflect the mechanical properties of the shield tail brushes, and save the test time greatly. (2) With the decrease of the shield tail gap, the adhesion force and elastic coefficient of the shield tail brushes increase continuously, the proportion of plastic deformation increases, and that of elastic deformation decreases. When the shield tail gap is 110 mm, the proportion of elastic deformation is 90%, and when it is compressed to 50 mm, the proportion of elastic deformation reduces to 60%. (3) The relationship among the gap, grease escape and adhesion force of shield tail is established, and the working safety area of the shield tail sealing system is obtained so as to evaluate the effectiveness of the status of shield tail sealing. The evaluation method for the performance of shield tail sealing is established, and can provide a reference for the performance evaluation and detection of the shield tail brushes.
-
-
表 1 盾尾刷力学性能指标
Table 1 Mechanical parameters of shield tail brush
盾尾间隙/mm 盾尾刷贴合力/N 压紧板残余高度/mm 压紧板残余角度/(°) 弹性系数/(N·mm-1) 50 1362.2 135 35.6 16 75 997.2 159 44.5 11.9 90 392 174 48 4.7 110 294 183 51.4 4.02 -
[1] 何 川, 封 坤, 方 勇. 盾构法修建地铁隧道的技术现状与展望[J]. 西南交通大学学报, 2015, 50(1): 97-109. doi: 10.3969/j.issn.0258-2724.2015.01.015 HE Chuan, FENG Kun, FANG Yong. Review and Prospects on Constructing Technologies of Metro Tunnels Using Shield Tunnelling Method [J]. Journal of Southwest Jiaotong University, 2015, 50(1): 97-109. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.015
[2] 朱 伟, 陈仁俊. 盾构隧道施工技术现状及展望(第3讲)——盾构隧道应用前景及发展方向[J]. 岩土工程界, 2002, 5(1): 18-20, 52. doi: 10.3969/j.issn.1674-7801.2002.01.040 ZHU Wei, CHEN Ren-jun. Current status and prospects of shield tunnel construction technology (lecture3)-application prospects and development directions of shield tunnels[J]. Geotechnical Engineering, 2002, 5(1): 18-20, 52. (in Chinese) doi: 10.3969/j.issn.1674-7801.2002.01.040
[3] 李艳春. 盾构法隧道施工中盾尾刷的优化与保护[J]. 湖南城市学院学报(自然科学版), 2015, 24(3): 33-34. doi: 10.3969/j.issn.1672-7304.2015.03.012 LI Yanchun. Shield tunneling optimization and protection shield tail brush[J]. Journal of Hunan City University (Natural Science), 2015, 24(3): 33-34. (in Chinese) doi: 10.3969/j.issn.1672-7304.2015.03.012
[4] 任广艳. 透水涌砂冒险堵漏隧道坍塌撤人不及: 广东省佛山市轨道交通2号线"2.7"透水坍塌重大事故分析[J]. 吉林劳动保护, 2019(8): 40-42. REN Guangyan. Seepage sand gushing, risk plugging, tunnel collapse, evacuation failure—analysis of the "2.7" serious accident of seepage collapse in Foshan Rail Transit Line 2, Guangdong Province[J]. Jilin Labour Protection, 2019(8): 40-42. (in Chinese)
[5] YU C, ZHOU A N, CHEN J, et al. Analysis of a tunnel failure caused by leakage of the shield tail seal system[J]. Underground Space, 2020, 5(2): 105-114. doi: 10.1016/j.undsp.2018.11.003
[6] 李奕, 钟志全. 一种新型盾尾刷的设计与应用[J]. 建筑机械化, 2011, 32(1): 82-84. doi: 10.3969/j.issn.1001-1366.2011.01.020 LI Yi, ZHONG Zhiquan. Design and application of a new-type shield tail brush[J]. Construction Mechanization, 2011, 32(1): 82-84. (in Chinese) doi: 10.3969/j.issn.1001-1366.2011.01.020
[7] 霍志光. 新型盾尾刷设计与应用分析[J]. 价值工程, 2011, 30(8): 87. doi: 10.3969/j.issn.1006-4311.2011.08.059 HUO Zhiguang. Design and application analysis of new shield tail brush[J]. Value Engineering, 2011, 30(8): 87. (in Chinese) doi: 10.3969/j.issn.1006-4311.2011.08.059
[8] 沈桂丽, 刘金祥, 李剑雄, 等. 盾尾密封刷实验平台的设计与研究[J]. 隧道建设, 2015, 35(8): 851-854. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201508023.htm SHEN Guili, LIU Jinxiang, LI Jianxiong, et al. Design of and study on tail brush experimental platform[J]. Tunnel Construction, 2015, 35(8): 851-854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201508023.htm
[9] WEI Linchun. Experimental study on mechanical bahavior of wire brushes on shield tail[J]. Tunnel Construction, 2021, 41(2): 206-211.
[10] YE Guan-lin, HAN Lei, SANTOSH Kumar Yadav, et al. Investigation on the tail brush induced loads upon segmental lining of a shield tunnel with small overburden[J]. Tunnelling and Underground Space Technology, 2020, 97: 103283. doi: 10.1016/j.tust.2020.103283
[11] 钟小春, 莫暖娇, 余明学, 等. 盾尾刷环形密封系统单元试验及水密性机制研究[J]. 岩土工程学报, 2023, 45(2): 354-361. doi: 10.11779/CJGE20211464 ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, et al. Study on the unit test of shield tail brush annular sealing system and its watertightness mechanism[J]. Journal of Geotechnical Engineering, 2023, 45(2): 354-361. (in Chinese) doi: 10.11779/CJGE20211464
[12] 黄旭民, 黄林冲, 梁禹. 施工期同步注浆影响下盾构隧道管片纵向上浮特征分析与应用[J]. 岩土工程学报, 2021, 43(9): 1700-1707. doi: 10.11779/CJGE202109015 HUANG Xumin, HUANG Linchong, LIANG Yu. Analysis and application of longitudinal uplift characteristics of segments of shield tunnels affected by synchronous grouting during construction period[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1700-1707. (in Chinese) doi: 10.11779/CJGE202109015
[13] 王德乾, 郑筱彦, 斯芳芳, 等. 盾尾密封油脂与盾构机及施工地层的适应性研究[J]. 铁道建筑技术, 2021(7): 8-12, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202107002.htm WANG Deqian, ZHENG Xiaoyan, SI Fangfang, et al. Study on adaptability of shield tail sealing paste, shield machine and shield construction strata[J]. Railway Construction Technology, 2021(7): 8-12, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202107002.htm