Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基坑开挖旁侧盾构隧道结构横向受力与变形研究

陈仁朋, 刘慕淳, 孟凡衍, 李忠超, 吴怀娜, 程红战

陈仁朋, 刘慕淳, 孟凡衍, 李忠超, 吴怀娜, 程红战. 基坑开挖旁侧盾构隧道结构横向受力与变形研究[J]. 岩土工程学报, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420
引用本文: 陈仁朋, 刘慕淳, 孟凡衍, 李忠超, 吴怀娜, 程红战. 基坑开挖旁侧盾构隧道结构横向受力与变形研究[J]. 岩土工程学报, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420
CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420
Citation: CHEN Renpeng, LIU Muchun, MENG Fanyan, LI Zhongchao, WU Huaina, CHENG Hongzhan. Circumferential forces and deformations of shield tunnels due to lateral excavation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 24-32. DOI: 10.11779/CJGE20211420

基坑开挖旁侧盾构隧道结构横向受力与变形研究  English Version

基金项目: 

国家自然科学基金项目 52090082

国家自然科学基金项目 51938005

博士后科学基金面上项目 2020M672489

武汉市市政建设集团有限公司隧道工程公司科研课题 

湖湘高层次人才聚集工程创新团队项目 2019RS1030

详细信息
    作者简介:

    陈仁朋(1972—),男,博士,教授,主要从事城市地下空间和交通岩土工程方面的研究工作。E-mail: chenrp@hnu.edu.cn

    通讯作者:

    孟凡衍, E-mail: fymeng@hnu.edu.cn

  • 中图分类号: TU432

Circumferential forces and deformations of shield tunnels due to lateral excavation

  • 摘要: 针对基坑开挖旁侧盾构隧道结构横向受力和变形规律,提出了一种考虑围护结构变形影响的盾构隧道横向受力理论计算方法,并通过某实际工程三维有限元计算结果和干砂地层隧道旁侧基坑开挖离心模型试验结果,验证了隧道径向附加荷载理论计算方法的可靠性。结合该工程获取的围护桩水平位移、地表沉降、隧道变形和应变现场实测数据,探究了隧道横向受力-变形-内力之间的关联机制。结果表明:①隧道初始径向荷载呈“葫芦形”对称分布,侧方开挖引起隧道近基坑侧和拱顶外荷载减小,而远基坑侧和拱底外荷载增大,这与开挖引起的自由场地层位移和隧道位移相对大小有关,水平和竖向不均衡荷载由隧道纵向差异变形引起的环间剪切力平衡。②隧道椭圆形变形、朝基底方向的顺时针旋转角度和正负弯矩值随开挖不断增大。③隧道环向弯矩分布与螺栓相对位置关系密切相关,研究断面处近基坑侧拱腰附近存在螺栓,其将承担更多的环向拉应力;远基坑侧拱腰附近为混凝土管片,环向拉应力主要由管片承担,从而使得研究断面处隧道管片最大环向弯矩发生在远基坑侧拱腰位置。
    Abstract: To investigate its transverse forces and deformations subjected to lateral excavation, a theoretical approach for estimating the transverse forces of a shield tunnel considering the influences of deflections of retaining wall proposed. The calculated radial additional loads on the tunnel is compared with the results of three-dimensional finite element analysis of a case history and centrifuge modeling of excavation effects on a nearby existing tunnel in dry sand, which verifies the reliability of this approach. Based on the measured pile deflections, ground settlements, tunnel deformations and structural strains from this case history, the interaction mechanisms of the transverse forces, deformations and internal forces of the tunnel are analyzed. The results show that: (1) The initial radial loads on the tunnel are symmetrically distributed in a "gourd shape". The lateral excavation results in the decrease in the loads on the tunnel crown and right springline near excavation, while the loads on the tunnel invert and left springline away from excavation increase. This phenomenon is related to the relative values of the free-field ground displacements and measured tunnel displacements caused by excavation. The horizontal and vertical unbalanced loads are balanced by the shear force between neighboring rings caused by longitudinal differential deformations of the tunnel. (2) The elliptical deformations, clockwise rotations and bending moments of the tunnel all increase as the excavation proceeds. (3) The distribution of the circumferential bending moment of the tunnel is closely related to the relative position of the bolts. There are bolts near the right tunnel springline closer to the excavation at the investigated cross section, which bear more circumferential tension stress. In comparison, there are no bolts adjacent to the left tunnel away from the excavation, and thus the circumferential tension stress is mainly undertaken by the segments. Hence, the maximum circumferential bending moment of the tunnel at the investigated cross section occurs at the left springline.
  • 图  1   旁侧卸载后隧道外荷载分布图

    Figure  1.   Circumferential loads on jointed tunnel linings after lateral excavation

    图  2   基坑与隧道平面图

    Figure  2.   Plan view of excavation and adjacent twin tunnels

    图  3   X0+364断面示意图

    Figure  3.   Cross section of X0+364

    图  4   X0+348—X0+480地质剖面图

    Figure  4.   Longitudinal geological profile (X0+348 to X0+480)

    图  5   隧道监测横断面图

    Figure  5.   Instrumentation at tunnel circumferential section

    图  6   X0+364断面围护桩水平位移图

    Figure  6.   Displacements of retaining pile at X0+364

    图  7   地表沉降与围护桩体位移的关系

    Figure  7.   Relationship between ground settlement and displacement of retaining pile

    图  8   X0+364断面隧道变形图(隧道变形放大1000倍)

    Figure  8.   Deformations of tunnel at X0+364 (scale =1∶1000)

    图  9   X0+364断面开挖前后隧道径向荷载分布图

    Figure  9.   Distribution of radial loads around tunnel before and after lateral braced excavation at X0+364

    图  10   X0+364断面隧道内侧环向附加应变分布图

    Figure  10.   Profile of additional internal circumferential strain of tunnel at X0+364

    图  11   X0+364断面底板浇筑完后隧道环向附加弯矩分布图

    Figure  11.   Additional internal circumferential bending moment of tunnel at X0+364 after base slab constructed

    图  12   右线隧道纵向水平挠度

    Figure  12.   Longitudinal horizontal displacements of right tunnel

    图  13   隧道水平剪切力纵向分布曲线

    Figure  13.   Distribution of horizontal shear stress along tunnel

    图  14   离心模型试验隧道径向荷载变化实测值[9]与理论值

    Figure  14.   Calculated and measured radial load changes around tunnel in centrifuge tests[9]

    表  1   主要土体物理力学参数

    Table  1   Physical and mechanical parameters of main soils

    土层 w/% γ/(kN·m-3) Es/MPa c/kPa ϕ/(°)
    1杂填土 27.8 17.9 6.0 8 18
    c碎石 22.2 19.5 11.3 52 32
    1残积土 23.5 19.4 12.5 39 20
    1强风化含
    粉砂泥岩
    20.5 46.0 50 18
    2-2中风化
    含粉砂泥岩
    22.9 62.0 70 20
    注:w为含水率;γ为重度;Es为压缩模量;c为黏聚力(固结快剪);ϕ为内摩擦角(固结快剪)。
    下载: 导出CSV

    表  2   X0+364施工顺序

    Table  2   Construction sequence at X0+364

    工序 施工时间 开挖或支撑深度/m
    第一层土方开挖 07-22—08-18 1.0~8.4
    第二道混凝土支撑浇筑 08-19—08-29 7.4~8.4
    第二层土方开挖 08-30—10-12 8.4~13.7
    第三道钢支撑安装 10-12—10-15 13.1~13.7
    第三层土方开挖 10-16—10-31 13.7~17.7
    底板浇筑 11-01—11-08 16.0~17.7
    下载: 导出CSV

    表  3   隧道外荷载

    Table  3   Magnitudes of external loads on tunnel  单位:kPa

    初始荷载 数值 附加荷载 数值
    p1 228.1 p7 -21.7
    p2 255.1 p8 +7.0
    p3 41.1 p9 -3.3
    p4 57.5 p10 +13.9
    p5 8.6
    p6 20.7
    下载: 导出CSV

    表  4   有限元计算土体参数

    Table  4   Soil parameters for finite element calculations

    土层 γ/(kN·m-3) Eoedref/MPa E50ref/MPa Eurref/MPa m c/kPa φ/(°) γ0.7/10-4 G0ref/MPa
    1 17.9 6.0 6.0 18.0 0.50 7 15
    c 19.5 11.3 11.3 33.9 0.50 32 15
    1 19.4 12.5 12.5 50.0 0.65 32 14 2.1 103.2
    1 20.5 38.3 38.3 114.9 0.50 34 17 1.0 120.5
    2-2 22.9 51.7 51.7 155.1 0.50 48 20
    注:Eoedref为参考切线模量;E50ref为参考割线模量;Eurref为参考卸载再加载模量;m为模量应力水平相关幂指数;c为有效黏聚力;φ为有效内摩擦角;γ0.7为剪切模量衰减到初始剪切模量70%时所对应的剪应变;G0ref为初始剪切模量。
    下载: 导出CSV
  • [1]

    CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235. doi: 10.1016/j.tust.2016.06.002

    [2]

    SHI C H, CAO C Y, LEI M F, et al. Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51: 175-188. doi: 10.1016/j.tust.2015.10.033

    [3] 张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. doi: 10.3969/j.issn.1000-7598.2011.07.028

    ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.028

    [4]

    SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320. doi: 10.1680/geot.1987.37.3.301

    [5]

    CHENG H Z, CHEN R P, WU H N, et al. A simplified method for estimating the longitudinal and circumferential behaviors of the shield-driven tunnel adjacent to a braced excavation[J]. Computers and Geotechnics, 2020, 123: 103595. doi: 10.1016/j.compgeo.2020.103595

    [6] 魏纲, 张鑫海, 林心蓓, 等. 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644, 654. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm

    WEI Gang, ZHANG Xinhai, LIN Xinbei, et al. Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation[J]. Rock and Soil Mechanics, 2020, 41(2): 635-644, 654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002035.htm

    [7]

    MENG F Y, CHEN R P, LIU S L, et al. Centrifuge modeling of ground and tunnel responses to nearby excavation in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020178. doi: 10.1061/(ASCE)GT.1943-5606.0002473

    [8] 陈仁朋, ASHRAF A M, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(增刊2): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2004.htm

    CHEN Renpeng, ASHRAF A M, MENG Fanyan. Three-dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S2004.htm

    [9]

    MENG F Y, CHEN R P, XU Y, et al. Centrifuge modeling of effectiveness of protective measures on existing tunnel subjected to nearby excavation[J]. Tunnelling and Underground Space Technology, 2021, 112: 103880. doi: 10.1016/j.tust.2021.103880

    [10]

    LIANG R Z, WU J, SUN L W, et al. Performances of adjacent metro structures due to zoned excavation of a large-scale basement in soft ground[J]. Tunnelling and Underground Space Technology, 2021, 117: 104123. doi: 10.1016/j.tust.2021.104123

    [11]

    GONG W P, WANG L, JUANG C H, et al. Robust geotechnical design of shield-driven tunnels[J]. Computers and Geotechnics, 2014, 56: 191-201. doi: 10.1016/j.compgeo.2013.12.006

    [12]

    VESIC A B. Beam on elastic subgrade and the Winkler's hypothesis[C]//Proceedings of the Fifth International Conference of Soil Mechanics and Foundation Engineering. Paris, 1961.

    [13] 张陈蓉, 俞剑, 黄茂松. 软黏土中水平循环荷载作用下刚性短桩的py曲线分析[J]. 岩土工程学报, 2011, 33(增刊2): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm

    ZHANG Chenrong, YU Jian, HUANG Maosong. Py curve analyses of rigid short piles subjected to lateral cyclic load in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm

    [14]

    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317-323. doi: 10.1016/j.tust.2015.08.001

    [15]

    NG C W W, HONG Y, LIU G B, et al. Ground deformations and soil-structure interaction of a multi-propped excavation in Shanghai soft clays[J]. Géotechnique, 2012, 62(10): 907-921. doi: 10.1680/geot.10.P.072

    [16]

    LI Z F, LIN W A, YE J N, et al. Soil movement mechanism associated with arching effect in a multi-strutted excavation in soft clay[J]. Tunnelling and Underground Space Technology, 2021, 110: 103816. doi: 10.1016/j.tust.2021.103816

    [17]

    HUANG X, SCHWEIGER H F, HUANG H W. Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13(2): 170-180. doi: 10.1061/(ASCE)GM.1943-5622.0000188

图(14)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-11-29
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回