Processing math: 100%
  • Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

交叉裂隙开度对滴状水流分流行为的影响

薛松, 杨志兵, 陈益峰, 童富果

薛松, 杨志兵, 陈益峰, 童富果. 交叉裂隙开度对滴状水流分流行为的影响[J]. 岩土工程学报, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415
引用本文: 薛松, 杨志兵, 陈益峰, 童富果. 交叉裂隙开度对滴状水流分流行为的影响[J]. 岩土工程学报, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415
XUE Song, YANG Zhibing, CHEN Yifeng, TONG Fuguo. Effects of fracture apertures on droplet splitting through unsaturated fracture intersections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415
Citation: XUE Song, YANG Zhibing, CHEN Yifeng, TONG Fuguo. Effects of fracture apertures on droplet splitting through unsaturated fracture intersections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415

交叉裂隙开度对滴状水流分流行为的影响  English Version

基金项目: 

国家杰出青年科学基金项目 51925906

国家自然科学基金重点项目 51939004

国家自然科学基金面上项目 42077177

国家自然科学基金青年项目 52209135

详细信息
    作者简介:

    薛松(1992—),男,博士,讲师,主要从事地下孔隙裂隙介质多相渗流方面研究。E-mail:xuesong@ctgu.edu.cn

    通讯作者:

    杨志兵,E-mail: zbyang@whu.edu.cn

  • 中图分类号: TU452

Effects of fracture apertures on droplet splitting through unsaturated fracture intersections

  • 摘要: 深入理解交叉裂隙渗流行为是预测裂隙网络渗流特性的关键。非饱和条件下交叉裂隙渗流与液体流态、交叉几何特征密切相关。针对低流量、低饱和度条件下的滴状渗流,开展了交叉裂隙液体分流模拟,发现了交叉处分流存在由液滴长度控制的主通道流动占优和支通道流动占优两种模式,并提出了关键液滴长度指标作为其临界条件。通过改变交叉裂隙主通道开度w1和支通道开度w2,系统探究了交叉裂隙开度对分流模式的影响规律及机制。模拟结果表明关键液滴长度受到通道毛细力和通道过流能力的联合控制;当两者对分流作用效果相反时关键液滴长度随裂隙开度w1呈非单调变化,而当两者作用效果一致时则随裂隙开度w1呈单调变化。此外,存在一个相对稳定的最优开度比w2/w1范围使关键液滴长度最大。研究成果为预测低流量、低饱和度条件下裂隙岩体渗流结构提供了理论和数据支撑。
    Abstract: An in-depth understanding of liquid flows through fracture intersections is important for predicting the seepage characteristics of fracture networks. The flow behavior of liquid at unsaturated intersections is closely related to the flow mode and geometric characteristics of fractures. A modeling study is given on the physical process of droplet splitting through unsaturated fracture intersections, which usually occurs under low flow rate and low saturation conditions. The effects of fracture apertures on droplet splitting behaviors are systematically investigated by varying the main channel width w1 and the branch width w2 of the fracture intersection. It is found that there are two droplet splitting patterns related to the droplet length: the flows dominated by the main channel and those dominated by the branch, which can be distinguished by the critical droplet length. This critical length is controlled by capillary force and permeability of channels, both varying with the channel widths. When the two controlling factors have opposite effects on the droplet splitting, the critical droplet length changes non-monotonously with w2. Conversely, the critical droplet length changes monotonously with w1. In addition, there is an optimal range for the width ratio w2/w1 to maximize the critical droplet length. This study provides theoretical support for predicting the seepage structure of fractured rocks under the conditions of low flow and low saturation.
  • 图  1   T型交叉裂隙液滴分流示意图

    Figure  1.   Schematic diagrams of a droplet splitting at a T-junction

    图  2   交叉处流量Q和瞬态分流比例η随时间t*的演化

    Figure  2.   Evolution of volumetric flow rate Q and transient splitting ratio η with time t*

    图  3   开度w2对液滴分流过程的影响:(a)~(c)流量QC2和随时间t*的演变;(d)~(f)瞬态分流比例η随时间t*的演变

    Figure  3.   Effects of width of channel C2 w2 on process of dropletsplitting: (a)~(c) evolution of volumetric flow rate QC2 with time t*; (d)~(f) evolution of transient splitting ratio η with time t*

    图  4   关键长度Lcrit和累积分流比例η*随开度w2的演化

    Figure  4.   Evolution of the critical droplet length Lcrit and cumulative splitting ratio η* with width w2

    图  5   开度w1对液滴分流过程的影响:(a)~(c)流量QC1随时间t*演变;(d)~(f)瞬态分流比例η随时间t*的演变

    Figure  5.   Effects of width of channel C2 w2 on process of droplet splitting: (a)~(c) evolution of volumetric flow rate QC1 with time t*; (d)~(f) evolution of transient splitting ratio η with time t*

    图  6   关键长度Lcrit和累积分流比例η*随开度w1的演化

    Figure  6.   Evolution of critical droplet length Lcrit and cumulative splitting ratio η* with width w1

    图  7   不同裂隙开度组合下关键液滴长度Lcrit的演化

    Figure  7.   Effects of combination of channel widths w1 and w2 on critical droplet length Lcrit

  • [1]

    SHIGORINA E, RÜDIGER F, TARTAKOVSKY A M, et al. Multiscale smoothed particle hydrodynamics model development for simulating preferential flow dynamics in fractured porous media[J]. Water Resources Research, 2021, 57(3): e2020WR027323.

    [2]

    KEIM D M, WEST L J, ODLING N E. Convergent flow in unsaturated fractured chalk[J]. Vadose Zone Journal, 2012, 11(4): vzj2011.0146. doi: 10.2136/vzj2011.0146

    [3] 李馨馨, 徐轶. 裂隙岩体渗流溶质运移耦合离散裂隙模型数值计算方法[J]. 岩土工程学报, 2019, 41(6): 1164-1171. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml

    LI Xinxin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml

    [4] 王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015

    [5] 谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(增刊1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm

    XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm

    [6] 袁俊平, 蔺彦玲, 丁鹏, 等. 裂隙诱导各向异性对边坡降雨入渗的影响[J]. 岩土工程学报, 2016, 38(1): 76-82. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml

    YUAN Junping, LIN Yanling, DING Peng, et al. Influence of anisotropy induced by fissures on rainfall infiltration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 76-82. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml

    [7] 井文君, 杨春和, 陈锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. 岩土力学, 2011, 32(6): 1787-1793. doi: 10.3969/j.issn.1000-7598.2011.06.031

    JING Wenjun, YANG Chunhe, CHEN Feng. Risk assessment of salt cavern oil/gas storage based on accident statistical analysis[J]. Rock and Soil Mechanics, 2011, 32(6): 1787-1793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.031

    [8]

    LAVIOLETTE R A. Self organized spatio-temporal structure within the fractured Vadose Zone: the influence of dynamic overloading at fracture intersections[J]. Geophysical Research Letters, 2004, 31(18): L18501. doi: 10.1029/2004GL020659

    [9]

    GLASS R J, NICHOLL M J, RAJARAM H, et al. Unsaturated flow through fracture networks: evolution of liquid phase structure, dynamics, and the critical importance of fracture intersections[J]. Water Resources Research, 2003, 39(12): 1352.

    [10]

    XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446. doi: 10.1016/j.compgeo.2020.103446

    [11] 倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498. doi: 10.3969/j.issn.1000-6915.2012.03.007

    NI Shaohu, HE Shihai, WANG Xiaogang, et al. Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.03.007

    [12] 刘日成, 李博, 蒋宇静, 等. 三维交叉裂隙渗流特性的实验和数值模拟研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3813-3821. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm

    LIU Richeng, LI Bo, JIANG Yujing, et al. Experimental and numerical study of hydraulic properties of 3D crossed fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3813-3821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm

    [13] 桑盛, 刘卫群, 宋良, 等. 岩体交叉裂隙水流分配特性研究[J]. 实验力学, 2016, 31(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm

    SANG Sheng, LIU Weiqun, SONG Liang, et al. On the flow distribution characteristics of cross cracks in rock mass[J]. Journal of Experimental Mechanics, 2016, 31(5): 577-583. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm

    [14]

    DRAGILA M I, WEISBROD N. Flow in menisci corners of capillary rivulets[J]. Vadose Zone Journal, 2004, 3(4): 1439-1442. doi: 10.2136/vzj2004.1439

    [15]

    OR D, GHEZZEHEI T A. Traveling liquid bridges in unsaturated fractured porous media[J]. Transport in Porous Media, 2007, 68(1): 129-151. doi: 10.1007/s11242-006-9060-9

    [16]

    KORDILLA J, DENTZ M, TARTAKOVSKY A M. Numerical and analytical modeling of flow partitioning in partially saturated fracture networks[J]. Water Resources Research, 2021, 57(4): e2020WR028775.

    [17]

    JI S H, NICHOLL M J, GLASS R J, et al. Influence of simple fracture intersections with differing aperture on density-driven immiscible flow: Wetting versus nonwetting flows[J]. Water Resources Research, 2006, 42(10): W10416.

    [18]

    KORDILLA J, TARTAKOVSKY A M, GEYER T. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces[J]. Advances in Water Resources, 2013, 59: 1-14. doi: 10.1016/j.advwatres.2013.04.009

    [19] 王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml

    WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml

    [20]

    JONES B R, BROUWERS L B, DIPPENAAR M A. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies[J]. Hydrogeology Journal, 2018, 26(3): 945-961. doi: 10.1007/s10040-017-1680-3

    [21]

    KORDILLA J, NOFFZ T, DENTZ M, et al. Effect of unsaturated flow modes on partitioning dynamics of gravity-driven flow at a simple fracture intersection: laboratory study and three-dimensional smoothed particle hydrodynamics simulations[J]. Water Resources Research, 2017, 53(11): 9496-9518. doi: 10.1002/2016WR020236

    [22]

    YANG Z B, XUE S, ZHENG X K, et al. Partitioning dynamics of gravity-driven unsaturated flow through simple T-shaped fracture intersections[J]. Water Resources Research, 2019, 55(8): 7130-7142. doi: 10.1029/2018WR024349

    [23]

    XUE S, YANG Z B, HU R, et al. Splitting dynamics of liquid slugs at a T‐junction[J]. Water Resources Research, 2020, 56(8): e2020WR027730.

    [24] 薛松, 杨志兵, 李东奇, 等. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm

    XUE Song, YANG Zhibing, LI Dongqi, et al. Splitting mechanisms of droplets through unsaturated fracture intersections[J]. Rock and Soil Mechanics, 2021, 42(1): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm

    [25]

    VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1976, 11(5): 714-721.

    [26]

    GHEZZEHEI T A, OR D. Liquid fragmentation and intermittent flow regimes in unsaturated fractured media[J]. Water Resources Research, 2005, 41(12): W12406.

    [27]

    SU G W, GELLER J T, HUNT J R, et al. Small-scale features of gravity-driven flow in unsaturated fractures[J]. Vadose Zone Journal, 2004, 3(2): 592-601.

    [28]

    DRAGILA M I, WEISBROD N. Parameters affecting maximum fluid transport in large aperture fractures[J]. Advances in Water Resources, 2003, 26(12): 1219-1228.

  • 期刊类型引用(4)

    1. 江烨,马强. 非饱和土地基中波阻板隔振屏障对P波的隔离效应. 工程力学. 2025(03): 228-237 . 百度学术
    2. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
    3. 焦豪,马强,周凤玺. P波入射下饱和冻土自由场地地震地面运动分析. 冰川冻土. 2024(01): 137-151 . 百度学术
    4. 袁大军,吴俊,沈翔,金大龙,李兴高. 超高水压越江海长大盾构隧道工程安全. 中国公路学报. 2020(12): 26-45 . 百度学术

    其他类型引用(15)

  • 其他相关附件

图(7)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  74
  • PDF下载量:  45
  • 被引次数: 19
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-11-29
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回