Effects of fracture apertures on droplet splitting through unsaturated fracture intersections
-
摘要: 深入理解交叉裂隙渗流行为是预测裂隙网络渗流特性的关键。非饱和条件下交叉裂隙渗流与液体流态、交叉几何特征密切相关。针对低流量、低饱和度条件下的滴状渗流,开展了交叉裂隙液体分流模拟,发现了交叉处分流存在由液滴长度控制的主通道流动占优和支通道流动占优两种模式,并提出了关键液滴长度指标作为其临界条件。通过改变交叉裂隙主通道开度w1和支通道开度w2,系统探究了交叉裂隙开度对分流模式的影响规律及机制。模拟结果表明关键液滴长度受到通道毛细力和通道过流能力的联合控制;当两者对分流作用效果相反时关键液滴长度随裂隙开度w1呈非单调变化,而当两者作用效果一致时则随裂隙开度w1呈单调变化。此外,存在一个相对稳定的最优开度比w2/w1范围使关键液滴长度最大。研究成果为预测低流量、低饱和度条件下裂隙岩体渗流结构提供了理论和数据支撑。Abstract: An in-depth understanding of liquid flows through fracture intersections is important for predicting the seepage characteristics of fracture networks. The flow behavior of liquid at unsaturated intersections is closely related to the flow mode and geometric characteristics of fractures. A modeling study is given on the physical process of droplet splitting through unsaturated fracture intersections, which usually occurs under low flow rate and low saturation conditions. The effects of fracture apertures on droplet splitting behaviors are systematically investigated by varying the main channel width w1 and the branch width w2 of the fracture intersection. It is found that there are two droplet splitting patterns related to the droplet length: the flows dominated by the main channel and those dominated by the branch, which can be distinguished by the critical droplet length. This critical length is controlled by capillary force and permeability of channels, both varying with the channel widths. When the two controlling factors have opposite effects on the droplet splitting, the critical droplet length changes non-monotonously with w2. Conversely, the critical droplet length changes monotonously with w1. In addition, there is an optimal range for the width ratio w2/w1 to maximize the critical droplet length. This study provides theoretical support for predicting the seepage structure of fractured rocks under the conditions of low flow and low saturation.
-
Keywords:
- fracture intersection /
- unsaturated flow /
- droplet flow /
- fracture aperture
-
-
-
[1] SHIGORINA E, RÜDIGER F, TARTAKOVSKY A M, et al. Multiscale smoothed particle hydrodynamics model development for simulating preferential flow dynamics in fractured porous media[J]. Water Resources Research, 2021, 57(3): e2020WR027323.
[2] KEIM D M, WEST L J, ODLING N E. Convergent flow in unsaturated fractured chalk[J]. Vadose Zone Journal, 2012, 11(4): vzj2011.0146. doi: 10.2136/vzj2011.0146
[3] 李馨馨, 徐轶. 裂隙岩体渗流溶质运移耦合离散裂隙模型数值计算方法[J]. 岩土工程学报, 2019, 41(6): 1164-1171. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml LI Xinxin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml
[4] 王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015 WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
[5] 谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(增刊1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm
[6] 袁俊平, 蔺彦玲, 丁鹏, 等. 裂隙诱导各向异性对边坡降雨入渗的影响[J]. 岩土工程学报, 2016, 38(1): 76-82. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml YUAN Junping, LIN Yanling, DING Peng, et al. Influence of anisotropy induced by fissures on rainfall infiltration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 76-82. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml
[7] 井文君, 杨春和, 陈锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. 岩土力学, 2011, 32(6): 1787-1793. doi: 10.3969/j.issn.1000-7598.2011.06.031 JING Wenjun, YANG Chunhe, CHEN Feng. Risk assessment of salt cavern oil/gas storage based on accident statistical analysis[J]. Rock and Soil Mechanics, 2011, 32(6): 1787-1793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.031
[8] LAVIOLETTE R A. Self organized spatio-temporal structure within the fractured Vadose Zone: the influence of dynamic overloading at fracture intersections[J]. Geophysical Research Letters, 2004, 31(18): L18501. doi: 10.1029/2004GL020659
[9] GLASS R J, NICHOLL M J, RAJARAM H, et al. Unsaturated flow through fracture networks: evolution of liquid phase structure, dynamics, and the critical importance of fracture intersections[J]. Water Resources Research, 2003, 39(12): 1352.
[10] XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446. doi: 10.1016/j.compgeo.2020.103446
[11] 倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498. doi: 10.3969/j.issn.1000-6915.2012.03.007 NI Shaohu, HE Shihai, WANG Xiaogang, et al. Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.03.007
[12] 刘日成, 李博, 蒋宇静, 等. 三维交叉裂隙渗流特性的实验和数值模拟研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3813-3821. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm LIU Richeng, LI Bo, JIANG Yujing, et al. Experimental and numerical study of hydraulic properties of 3D crossed fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3813-3821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm
[13] 桑盛, 刘卫群, 宋良, 等. 岩体交叉裂隙水流分配特性研究[J]. 实验力学, 2016, 31(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm SANG Sheng, LIU Weiqun, SONG Liang, et al. On the flow distribution characteristics of cross cracks in rock mass[J]. Journal of Experimental Mechanics, 2016, 31(5): 577-583. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm
[14] DRAGILA M I, WEISBROD N. Flow in menisci corners of capillary rivulets[J]. Vadose Zone Journal, 2004, 3(4): 1439-1442. doi: 10.2136/vzj2004.1439
[15] OR D, GHEZZEHEI T A. Traveling liquid bridges in unsaturated fractured porous media[J]. Transport in Porous Media, 2007, 68(1): 129-151. doi: 10.1007/s11242-006-9060-9
[16] KORDILLA J, DENTZ M, TARTAKOVSKY A M. Numerical and analytical modeling of flow partitioning in partially saturated fracture networks[J]. Water Resources Research, 2021, 57(4): e2020WR028775.
[17] JI S H, NICHOLL M J, GLASS R J, et al. Influence of simple fracture intersections with differing aperture on density-driven immiscible flow: Wetting versus nonwetting flows[J]. Water Resources Research, 2006, 42(10): W10416.
[18] KORDILLA J, TARTAKOVSKY A M, GEYER T. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces[J]. Advances in Water Resources, 2013, 59: 1-14. doi: 10.1016/j.advwatres.2013.04.009
[19] 王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml
[20] JONES B R, BROUWERS L B, DIPPENAAR M A. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies[J]. Hydrogeology Journal, 2018, 26(3): 945-961. doi: 10.1007/s10040-017-1680-3
[21] KORDILLA J, NOFFZ T, DENTZ M, et al. Effect of unsaturated flow modes on partitioning dynamics of gravity-driven flow at a simple fracture intersection: laboratory study and three-dimensional smoothed particle hydrodynamics simulations[J]. Water Resources Research, 2017, 53(11): 9496-9518. doi: 10.1002/2016WR020236
[22] YANG Z B, XUE S, ZHENG X K, et al. Partitioning dynamics of gravity-driven unsaturated flow through simple T-shaped fracture intersections[J]. Water Resources Research, 2019, 55(8): 7130-7142. doi: 10.1029/2018WR024349
[23] XUE S, YANG Z B, HU R, et al. Splitting dynamics of liquid slugs at a T‐junction[J]. Water Resources Research, 2020, 56(8): e2020WR027730.
[24] 薛松, 杨志兵, 李东奇, 等. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm XUE Song, YANG Zhibing, LI Dongqi, et al. Splitting mechanisms of droplets through unsaturated fracture intersections[J]. Rock and Soil Mechanics, 2021, 42(1): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm
[25] VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1976, 11(5): 714-721.
[26] GHEZZEHEI T A, OR D. Liquid fragmentation and intermittent flow regimes in unsaturated fractured media[J]. Water Resources Research, 2005, 41(12): W12406.
[27] SU G W, GELLER J T, HUNT J R, et al. Small-scale features of gravity-driven flow in unsaturated fractures[J]. Vadose Zone Journal, 2004, 3(2): 592-601.
[28] DRAGILA M I, WEISBROD N. Parameters affecting maximum fluid transport in large aperture fractures[J]. Advances in Water Resources, 2003, 26(12): 1219-1228.
-
期刊类型引用(4)
1. 江烨,马强. 非饱和土地基中波阻板隔振屏障对P波的隔离效应. 工程力学. 2025(03): 228-237 . 百度学术
2. 蒙贤忠,夏宇磬,周传波,冯庆高,蒋楠,杨玉民. 土–岩地层水平孔爆破诱发振动传播特征及预测. 岩石力学与工程学报. 2025(03): 737-751 . 百度学术
3. 焦豪,马强,周凤玺. P波入射下饱和冻土自由场地地震地面运动分析. 冰川冻土. 2024(01): 137-151 . 百度学术
4. 袁大军,吴俊,沈翔,金大龙,李兴高. 超高水压越江海长大盾构隧道工程安全. 中国公路学报. 2020(12): 26-45 . 百度学术
其他类型引用(15)
-
其他相关附件