Effects of in-situ jet grouting-aided chemical oxidation on geotechnical properties of petroleum hydrocarbon-contaminated silty clay
-
摘要: 化学氧化广泛应用于石油烃污染土壤修复,但化学氧化作用对石油烃污染黏性土工程特性的影响尚不明晰。通过原位高压旋喷化学氧化试验,对比分析石油烃污染与氢氧化钠活化过硫酸钠氧化作用对长江下游地区粉质黏土工程特性的影响,并定量评价石油烃污染和化学氧化作用对土的工程特性影响程度。结果表明:石油烃污染(720 mg/kg)对粉质黏土的渗透性影响程度为中等;掺量为3%的氢氧化钠活化过硫酸钠氧化作用对石油烃污染土的干密度影响程度为中等,对含水率、孔隙比、界限含水率、压缩性、渗透性影响程度为大;未污染土、污染土和修复土的压缩指数与液限存在良好的线性关系;未污染土和污染土的渗透系数与孔隙比在半对数坐标系中存在良好的正相关关系;而修复土的渗透系数与孔隙比关联关系较差。研究结果为长江经济带类似污染场地的修复与安全再利用提供指导。Abstract: The chemical oxidation is a widely used remediation technology for petroleum hydrocarbon-contaminated soils. However, the effects of in-situ chemical oxidation on the geotechnical properties of contaminated soils are unclear. An in-situ jet grouting-aided chemical oxidation test is conducted at a petroleum hydrocarbon-contaminated site located at the lower reaches of the Yangtze River. The effects of petroleum hydrocarbon-contamination and chemical oxidation on the geotechnical properties of the studied silty clay are investigated, and the corresponding degrees of effects (DOEs) of series geotechnical parameters are evaluated as per China GB 50021-2001. The test results show that the DOEs of petroleum hydrocarbon-contamination (720 mg/kg) on the hydraulic conductivity are moderate. The DOEs of sodium hydroxide-activated sodium persulfate addition (3%) on the dry density are moderate, and those on the water content, void ratio, Atterberg limits, compressibility and hydraulic conductivity are significant. The compression indexes and the liquid limits of clean, contaminated, and treated soils exhibit a linear relationship. Furthermore, a positive correlation relationship is observed between the hydraulic conductivity and the void ratio of the clean and contaminated soils on the semilogarithm coordinate.
-
Keywords:
- chemical oxidation /
- petroleum hydrocarbon /
- silty clay /
- geotechnical property /
- jet grouting
-
-
表 1 工程特性指标变化率
Table 1 Change rates of geotechnical property indexes
工程特性参数 污染区土样 修复区土样 含水率 0.74* 79.91*** 密度 1.99* 8.79* 相对质量密度 < 0.01* 0.74* 干密度 1.92* 22.08** 孔隙比 4.06* 65.42*** 液限 0.06* 57.89*** 塑限 0.48* 55.24*** 塑性指数 0.59* 60.51*** 压缩系数 8.99* 128.57*** 水平渗透系数 28.49** 91.43*** 垂向渗透系数 21.78** 91.14*** 注:*为影响轻微,**为影响中等,***为影响大。 -
[1] 中华人们共和国国务院. 长江经济带发展规划纲要[R]. 2016. The State Council, The People's Republic of China. Outline of Yangtze River Economic Belt Development Plan[R]. 2016. (in Chinese)
[2] QU C S, WANG S, ENGELUND H P. China: Soil clean-up needs cash and clarity[J]. Nature, 2016, 538(7625): 371.
[3] ZHOU Y, LIU Y S. China's fight against soil pollution[J]. Science, 2018, 362(6412): 298. doi: 10.1126/science.aav4061
[4] HOANG S A, SARKAR B, SESHADRI B, et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review[J]. Journal of Hazardous Materials, 2021, 416: 125702. doi: 10.1016/j.jhazmat.2021.125702
[5] QUIGLEY R M, FERNANDEZ F, YANFUL E, et al. Hydraulic conductivity of contaminated natural clay directly below a domestic landfill[J]. Canadian Geotechnical Journal, 1987, 24(3): 377-383. doi: 10.1139/t87-048
[6] NAYAK S, SUNIL B M, SHRIHARI S. Hydraulic and compaction characteristics of leachate-contaminated lateritic soil[J]. Engineering Geology, 2007, 94(3/4): 137-144.
[7] KHAMEHCHIYAN M, HOSSEIN C A, TAJIK M. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering Geology, 2007, 89(3/4): 220-229.
[8] XU P P, ZHANG Q Y, QIAN H, et al. Investigating the mechanism of pH effect on saturated permeability of remolded loess[J]. Engineering Geology, 2021, 284: 105978. doi: 10.1016/j.enggeo.2020.105978
[9] DU Y J, JIANG N J, LIU S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated Kaolin[J]. Canadian Geotechnical Journal, 2014, 51(3): 289-302. doi: 10.1139/cgj-2013-0177
[10] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.
[11] LOMINCHAR M A, SANTOS A, DE MIGUEL E, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate[J]. Science of the Total Environment, 2018, 622/623: 41-48. doi: 10.1016/j.scitotenv.2017.11.263
[12] LI Y T, ZHANG J J, LI Y H, et al. Treatment of soil contaminated with petroleum hydrocarbons using activated persulfate oxidation, ultrasound, and heat: A kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2021, 428(3/4): 131336.
[13] CHEN Y Z, ZHOU W H, LIU F M, et al. Exploring the effects of nanoscale zero-valent iron (nZVI) on the mechanical properties of lead-contaminated clay[J]. Canadian Geotechnical Journal, 2019, 56(10): 1395-1405. doi: 10.1139/cgj-2018-0387
[14] POLLI F, ZINGARETTI D, CROGNALE S, et al. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil[J]. Chemosphere, 2018, 191: 580-588. doi: 10.1016/j.chemosphere.2017.10.081
[15] CHEN L W, HU X X, CAI T M, et al. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084
[16] 高彦斌, 刘佳丹, 王雨滢. 酸碱污染重塑粉质黏土的塑性及其与力学特性的关系[J]. 岩土工程学报, 2018, 40(11): 2103-2109. doi: 10.11779/CJGE201811017 GAO Yanbin, LIU Jiadan, WANG Yuying. Plasticity and its relationship with mechanical properties of a remolded silty clay contaminated by several acids and bases[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2103-2109. (in Chinese) doi: 10.11779/CJGE201811017
[17] MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. Hoboken, NJ: John Wiley & Sons, 2005.
[18] CHANEY R C, DEMARS K R, SRIDHARAN A, et al. Percussion and cone methods of determining the liquid limit of soils: controlling mechanisms[J]. Geotechnical Testing Journal, 2000, 23(2): 236. doi: 10.1520/GTJ11048J
[19] GAJO A, MAINES M. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active clay[J]. Géotechnique, 2007, 57(8): 687-699. doi: 10.1680/geot.2007.57.8.687
[20] CROCE P, FLORA A. Analysis of single-fluid jet grouting[J]. Géotechnique, 2000, 50(6): 739-748. doi: 10.1680/geot.2000.50.6.739
[21] CHAI J C, JIA R, HINO T. Anisotropic consolidation behavior of ariake clay from three different CRS tests[J]. Geotechnical Testing Journal, 2012, 35(6): 103848. doi: 10.1520/GTJ103848
[22] TERZAGHI K, PECK R B. Soil mechanics in engineering practice[M]. 2d ed. New York: Wiley, 1967.
[23] AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility[J]. Soils and Foundations, 1976, 16(2): 19-29. doi: 10.3208/sandf1972.16.2_19
[24] YOON G L, KIM B T, JEON S S. Empirical correlations of compression index for marine clay from regression analysis[J]. Canadian Geotechnical Journal, 2004, 41(6): 1213-1221. doi: 10.1139/t04-057
[25] ZENG L L, HONG Z S, GAO Y F. Practical estimation of compression behaviour of dredged clays with three physical parameters[J]. Engineering Geology, 2017, 217: 102-109. doi: 10.1016/j.enggeo.2016.12.013
[26] CUISINIER O, AURIOL J C, LE BORGNE T, et al. Microstructure and hydraulic conductivity of a compacted lime-treated soil[J]. Engineering Geology, 2011, 123(3): 187-193. doi: 10.1016/j.enggeo.2011.07.010
[27] DENG Y F, YUE X B, LIU S Y, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152. doi: 10.1016/j.enggeo.2015.04.018
[28] REN X W, SANTAMARINA J C. The hydraulic conductivity of sediments: a pore size perspective[J]. Engineering Geology, 2018, 233: 48-54. doi: 10.1016/j.enggeo.2017.11.022
[29] YANG Y L, REDDY K R, DU Y J, et al. Short-term hydraulic conductivity and consolidation properties of soil-bentonite backfills exposed to CCR-impacted groundwater[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(6): 04018025. doi: 10.1061/(ASCE)GT.1943-5606.0001877
[30] ZENG L, CAI Y Q, CUI Y, et al. Hydraulic conductivity of reconstituted clays based on intrinsic compression[J]. Géotechnique, 2020, 70(3): 268–275. doi: 10.1680/jgeot.18.P.096
[31] DENG Y F, LIU L, CUI Y J, et al. Colloid effect on clogging mechanism of hydraulic reclamation mud improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2019, 56(5): 611-620. doi: 10.1139/cgj-2017-0635
[32] INDRARATNA B, REDANA I W. Plane-strain modeling of smear effects associated with vertical drains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 474-478. doi: 10.1061/(ASCE)1090-0241(1997)123:5(474)
[33] XIE P C, GUO Y Z, CHEN Y Q, et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants[J]. Chemical Engineering Journal, 2017, 314: 240-248. doi: 10.1016/j.cej.2016.12.094
[34] CHEN Y Q, TONG Y, LIU Z Z, et al. Enhanced degradation of Orange II using a novel UV/persulfate/sulfite system[J]. Environmental Chemistry Letters, 2019, 17(3): 1435-1439. doi: 10.1007/s10311-019-00880-2
-
期刊类型引用(7)
1. 黄波林,殷跃平,李仁江,蒋树,秦臻,张鹏,闫国强. 滑坡涌浪综合防控工程措施研究进展与挑战. 工程地质学报. 2025(01): 159-170 . 百度学术
2. 刘红波,于磊,陈志华,陈再捷,庞富刚. 全钢集成式附着升降脚手架冲击性能研究. 施工技术(中英文). 2022(22): 72-79 . 百度学术
3. 王文沛,殷跃平,胡卸文,李滨,刘明学,祁小博. 碎屑流冲击下桩梁组合结构拦挡效果及受力特征研究. 地质力学学报. 2022(06): 1081-1089 . 百度学术
4. 范定坚,任曼妮. 约束空心混凝土柱抗侧向冲击动力性能. 辽宁工程技术大学学报(自然科学版). 2021(03): 214-219 . 百度学术
5. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 . 百度学术
6. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 . 百度学术
7. 任根立,王秀丽. 泥石流块石冲击下钢绞线网组合结构的动力响应模拟研究. 安全与环境工程. 2019(05): 85-93 . 百度学术
其他类型引用(6)