• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同规范建议的反应加速度法的比较研究

刘晶波, 陆喜欢, 宝鑫

刘晶波, 陆喜欢, 宝鑫. 不同规范建议的反应加速度法的比较研究[J]. 岩土工程学报, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392
引用本文: 刘晶波, 陆喜欢, 宝鑫. 不同规范建议的反应加速度法的比较研究[J]. 岩土工程学报, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392
LIU Jingbo, LU Xihuan, BAO Xin. Comparison of response acceleration methods suggested by different standards[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392
Citation: LIU Jingbo, LU Xihuan, BAO Xin. Comparison of response acceleration methods suggested by different standards[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 47-56. DOI: 10.11779/CJGE20211392

不同规范建议的反应加速度法的比较研究  English Version

基金项目: 

国家自然科学基金项目 52108458

国家自然科学基金项目 U1839201

博士后创新人才支持计划项目 BX20200192

中国博士后科学基金项目 2020M680575

清华大学“水木学者”计划项目 2020SM005

详细信息
    作者简介:

    刘晶波(1956—),男,博士,教授,主要从事结构抗震和防灾减灾方面的研究工作。E-mail: liujb@tsinghua.edu.cn

    通讯作者:

    宝鑫, E-mail: baox@tsinghua.edu.cn

  • 中图分类号: TU435

Comparison of response acceleration methods suggested by different standards

  • 摘要: 《城市轨道交通结构抗震设计规范》和《核电厂抗震设计标准》给出了两种地下结构抗震分析的反应加速度法,其差异在于有效惯性加速度的确定,前者通过自由场剪应力计算水平有效惯性加速度,后者直接采用自由场加速度作为有效惯性加速度。通过理论分析和数值算例评价了两种反应加速度法的适用性,并比较研究了两种方法计算得到的水平有效惯性加速度随场地类型、场地剪切波速和地震动强度的变化规律。研究结果表明:是否考虑土体的阻尼是两种反应加速度法计算差异的主要来源,同时相邻土层的刚度比(波速比)也是产生差异的来源;两种规范方法计算得到的水平有效惯性加速度的差异随场地剪切波速的增大而减小,随地震动强度的增大而增大;当场地条件差或地震动强度大时,基于剪应力计算的水平有效惯性加速度更为合理,据此计算获得的位移场与动力时程法的计算结果一致,具有更为良好的计算精度。同时提出了一种通过自由场位移计算有效惯性加速度的反应加速度法——基于位移的反应加速度法,讨论和比较了采用位移确定有效加速度时的特点及用于反应加速度法时的计算精度,初步证明基于位移的反应加速度法具有良好的计算精度和更为广泛的适应性。
    Abstract: The Chinese specifications, "Code for seismic design of urban rail transit structures" and "Standard for seismic design of nuclear power plants", give two response acceleration methods for the seismic analysis of underground structures. The difference lies in the determination of the effective inertial acceleration. The former calculates the horizontal effective inertia through free-field shear stress. However, the latter directly uses the free-field acceleration as the effective inertial acceleration. Their applicability is evaluated through the theoretical analysis and numerical examples, and the horizontal effective inertial acceleration calculated by the two methods is compared and studied with the site type, shear wave velocity and ground motion intensity. The research results show that whether to consider the damping of the soil is the main source of the difference in the calculation of the two response acceleration methods, and the stiffness ratio (wave velocity ratio) of the adjacent soil layers is also the source of the difference. The difference of the horizontal effective inertia calculated by the two standard methods decreases with the increase of shear wave velocity, and increases with the increase of ground motion intensity. When the site conditions are poor or the ground motion intensity is high, the horizontal effective inertial acceleration calculated based on the shear stress is more reasonable. The displacement obtained by this calculation is consistent with the calculated result by the dynamic time history method, thus it has better calculation accuracy. A new response acceleration method for calculating the effective inertial acceleration through free-field displacement is also proposed-displacement-based response acceleration method. The characteristics of using the free-field displacement to determine the effective acceleration and the calculation accuracy when used in the response acceleration method are discussed and compared, and it is preliminarily verified that the displacement-based response acceleration method has good calculation accuracy and wider adaptability.
  • 图  1   土层单元示意图

    Figure  1.   Schematic diagram of soil layers

    图  2   地震动记录加速度时程曲线

    Figure  2.   Time histories of ground motion

    图  3   不同场地水平有效惯性加速度随深度的分布曲线

    Figure  3.   Curves of effective response acceleration with depth by different soil models

    图  4   不同场地类型自由地表处加速度Fourier谱

    Figure  4.   Fourier spectra on free surface by different soil models

    图  5   不同土体初始剪切波速下水平有效惯性加速度随深度的分布曲线

    Figure  5.   Curves of effective response acceleration with depth by models with different soil parameters

    图  6   不同地震动强度水平下有效惯性加速度随深度的分布曲线

    Figure  6.   Curves of effective response acceleration with depth of different peak acceleration models

    图  7   均匀半空间场地水平位移随深度变化曲线

    Figure  7.   Curves of lateral displacement with depth of half space

    图  8   复杂场地水平位移随深度变化曲线

    Figure  8.   Curves of lateral displacement with depth of complex site

    表  1   均匀半空间场地模型参数

    Table  1   Parameters of models for half space

    材料类型 密度/(kg·m-3) 厚度/m 初始剪切波速v0/(m·s-1)
    基岩 2242.6 768.0
    下载: 导出CSV

    表  2   双覆盖层场地模型参数

    Table  2   Parameters of models for double-covered site

    材料类型 密度/(kg·m-3) 厚度/m 初始剪切波速v0/(m·s-1)
    黏土 1890.0 35.4 120.0
    砂土 2010.0 52.6 340.0
    基岩 2242.6 768.0
    下载: 导出CSV

    表  3   复杂场地模型参数

    Table  3   Parameters of models for complex site

    材料类型 密度/(kg·m-3) 厚度/m 初始剪切波速v0/(m·s-1)
    黏土 1930.0 2.0 80.0
    黏土 1830.0 6.0 88.0
    砂土 1890.0 2.0 208.2
    黏土 2010.0 23.4 111.5
    黏土 1930.0 2.0 278.5
    黏土 1920.0 16.8 147.5
    砂土 1970.0 3.5 368.3
    黏土 1930.0 25.5 200.1
    黏土 2010.0 4.8 356.2
    砂土 1970.0 2.0 455.7
    基岩 2242.6 768.0
    下载: 导出CSV

    表  4   岩土介质动力参数

    Table  4   Dynamic parameters of soils

    黏土 砂土 基岩
    应变/% G/Gmax 阻尼比/% 应变/% G/Gmax 阻尼比/% 应变/% G/Gmax 阻尼比/%
    0.0001 1.0000 1.50 0.0001 1.000 1.04 0.0001 1.000 1.00
    0.0003 1.0000 1.60 0.0003 1.000 1.31 0.0003 1.000
    0.0010 1.0000 1.88 0.0010 0.990 1.65 0.0010 1.000 1.42
    0.0030 0.9840 2.81 0.0030 0.960 2.00 0.0030 0.981
    0.0100 0.9470 4.65 0.0100 0.850 3.00 0.0100 0.950 2.80
    0.0300 0.8470 7.51 0.0300 0.640 5.10 0.0030 0.850
    0.1000 0.6560 11.69 0.1000 0.370 9.80 0.1000 0.725 6.14
    0.3000 0.4380 16.16 0.3000 0.180 15.50 1.0000 0.550 13.59
    1.0000 0.2380 21.00 1.0000 0.080 21.00
    3.0000 0.1440 25.00 3.0000 0.050 25.00
    10.0000 0.1100 28.00 10.0000 0.035 28.00
    下载: 导出CSV

    表  5   均匀半空间场地结构位置处自由场变形相对误差

    Table  5   Relative errors of free-field deformation at position of structures of half space

    场地剪切波速/(m·s-1) 地震波 峰值加速度/g 规范一方法/% 规范二方法/% 基于位移法/%
    v0=100 Loma Prieta 0.40 -0.40 -10.99 -0.81
    Kobe -0.22 -3.28 -0.80
    Northridge -0.74 -1.52 0.17
    v0=300 Loma Prieta 0.40 -0.39 1.36 0.13
    Kobe 0.73 1.43 -0.23
    Northridge -0.28 4.29 -0.37
    v0=768 Loma Prieta 0.40 15.93 16.11 0.17
    Kobe 8.28 8.10 1.06
    Northridge -1.96 -0.61 -0.40
    下载: 导出CSV

    表  6   复杂场地结构位置处自由场变形相对误差

    Table  6   Relative errors of free-field deformation at position of structures of complex site

    场地模型 地震波 峰值加速度/g 规范一方法/% 规范二方法/% 基于位移法/%
    Loma Prieta 0.10 -1.16 4.06 -0.16
    Kobe -0.56 -4.23 -2.10
    Northridge -1.00 2.48 0.26
    复杂场地
    vse=149.52 m/s)
    Loma Prieta 0.20 -1.32 5.33 -0.01
    Kobe -0.31 -5.70 -1.27
    Northridge -0.44 -4.99 -1.06
    Loma Prieta 0.40 -0.93 21.25 -0.39
    Kobe -1.76 -7.67 -1.75
    Northridge -0.52 -5.99 -1.37
    下载: 导出CSV
  • [1] 许成顺, 许紫刚, 杜修力, 等. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 2017, 37(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

    XU Chengshun, XU Zigang, DU Xiuli, et al. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 65-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

    [2]

    VAN NOSTRAND R. Proceedings of the international symposium on wave propagation and dynamic properties of earth materials[J]. Earth-Science Reviews, 1969, 5(4): A203.

    [3]

    KUESEL T R. Earthquake design criteria for subways[J]. Journal of the Structural Division, 1969, 95(6): 1213-1231. doi: 10.1061/JSDEAG.0002292

    [4]

    HAMADA M, SUGIHARA Y, SHIBA Y, et al. Observation and study on dynamic behavior of rock cavern during earthquake[J]. Proceedings of the Japan Society of Civil Engineers, 1984, 1984(341): 187-196. doi: 10.2208/jscej1969.1984.187

    [5] 川岛一彦. 地下构筑物の耐震设计[M]. 鹿岛: 鹿岛出版会, 1994.

    KAZUHIKO K. Seismic Design of Underground Structures[M]. Kashima: Kashima Publishing Company, 1994. (in Japanese)

    [6] 地下结构抗震设计标准: GB/T 51336—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)

    [7] 刘晶波, 王文晖, 赵冬冬, 等. 地下结构抗震分析的整体式反应位移法[J]. 岩石力学与工程学报, 2013, 32(8): 1618-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm

    LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method for seismic analysis of underground structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1618-1624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308015.htm

    [8] 刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm

    LIU Jingbo, WANG Wenhui, ZHAO Dongdong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201401018.htm

    [9] 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014.

    Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)

    [10] 核电厂抗震设计标准: GB 50267—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Seismic Design of Nuclear Power Plants: GB 50267—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [11] 刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm

    LIU Jingbo, LIU Xiangqing, LI Bin. A Pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200804011.htm

    [12]

    TATEISHI A. A study on seismic analysis methods in the cross section of underground structures using static finite element method[J]. Structural Engineering, 2005, 22(1): 41-54. doi: 10.2208/jsceseee.22.41s

    [13] 刘如山, 胡少卿, 石宏彬. 地下结构抗震计算中拟静力法的地震荷载施加方法研究[J]. 岩土工程学报, 2007, 29(2): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm

    LIU Rushan, HU Shaoqing, SHI Hongbin. Study on seismic loading of pseudo-static approach used in the seismic design of underground structure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 237-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm

    [14] 陶连金, 王文沛, 张波, 等. 地铁地下结构抗震设计方法差异性规律研究[J]. 土木工程学报, 2012, 45(12): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm

    TAO Lianjin, WANG Wenpei, ZHANG Bo, et al. Difference law study of seismic design methods for subway structures[J]. China Civil Engineering Journal, 2012, 45(12): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201212021.htm

    [15] 董正方, 蔡宝占, 姚毅超, 等. 反应加速度法和反应位移法精度随结构埋深变化的研究[J]. 振动与冲击, 2017, 36(14): 216-220, 244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm

    DONG Zhengfang, CAI Baozhan, YAO Yichao, et al. Accuracy of the response acceleration method and response displacement method considering different imbedding depths of underground structures[J]. Journal of Vibration and Shock, 2017, 36(14): 216-220, 244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201714034.htm

    [16] 徐琨鹏, 景立平, 宾佳. 地下结构强制反应位移法和反应加速度法的对比分析[J]. 地震工程学报, 2020, 42(4): 967-972. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm

    XU Kunpeng, JING Liping, BIN Jia. A comparative analysis of forced displacement and response acceleration methods for underground structures[J]. China Earthquake Engineering Journal, 2020, 42(4): 967-972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004020.htm

    [17] 禹海涛, 张正伟, 李攀. 地下结构抗震设计的改进等效反应加速度法[J]. 岩土力学, 2020, 41(7): 2401-2410. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm

    YU Haitao, ZHANG Zhengwei, LI Pan. Improved equivalent response acceleration method for seismic design of underground structures[J]. Rock and Soil Mechanics, 2020, 41(7): 2401-2410. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007027.htm

  • 期刊类型引用(5)

    1. 赵云,杨忠方,张朋,凌道盛. 非饱和砂土中深埋活动门试验松动土压力计算. 岩土工程学报. 2025(04): 769-778 . 本站查看
    2. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 . 百度学术
    3. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 . 百度学术
    4. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 . 百度学术
    5. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看

    其他类型引用(10)

  • 其他相关附件

图(8)  /  表(6)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  40
  • PDF下载量:  104
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-11-22
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-11-22
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回