Model for seismic dynamic response of slope terrain site in layered half-space based on scaled boundary finite element method
-
摘要: 由于左右侧不对称且不规则的边界条件延伸到远场,斜坡地形场地的地震波动场求解存在一定困难。为得到成层半空间中斜坡地形场地的地震动力响应,基于波场理论提出一种以相似拼接线为缩放中心的比例边界有限元法计算模型:首先将待求波动场分解为具有规则边界条件的已知波场和由已知波场在真实不规则边界处引起的散射波场,然后通过在斜坡场地的不规则边界处施加等效地震荷载将散射波场的求解由外源输入问题转化为内源辐射问题,最后推导了适用于水平及倾斜成层、左右岸不对称等复杂地基的比例边界有限元法,可沿径向解析地求解斜坡场地的内源辐射问题。通过与文献中均质和成层弹性半空间中凹陷地形场地在SH波入射条件下地表动力响应进行对比,表明了计算模型的准确性,并通过分析成层半空间中斜坡地形场地的波动响应验证了模型的有效性。提出的计算模型,为复杂地基-结构相互作用分析的输入波动场计算提供了新的技术手段。Abstract: For the slope terrain site, the asymmetric and irregular boundary conditions at the left and right sides extend to the far field, which makes it difficult to solve the ground motion waves. In order to obtain the seismic dynamic response of the layered slope terrain sites, based on the wave field theory, a computational model proposed for the scaled boundary finite element method (SBFEM) whose scaling center is the splicing lines. Firstly, the wave field to be determined is decomposed into the known wave field with regular boundary conditions and the scattered wave field caused by the real irregular boundary of the slope-shaped site in the known wave field. Then, the solution of the scattered wave field is transformed from the wave scattered problem to the internal radiation one by applying the equivalent seismic loads on the irregular boundary of the slope terrain site. Finally, the SBFEM, which is suitable for the foundation with horizontal and inclined layes and asymmetric left and right sides, is derived for the internal radiation problem of the slope terrain site analytically along the radial direction. The accuracy of the model is demonstrated by comparing the surface dynamic responses of the depressed terrain site in the uniform and layered elastic half-space under the SH wave incident in the literature, and the validity of the model is verified by analyzing the wave response of the slope terrain site in the layered half-space. The proposed model provides an alternative technique for calculation of the input wave field of the complex soil-structure interaction analysis.
-
Keywords:
- slope terrain /
- layered half-space /
- seismic wave input /
- SBFEM /
- seismic wave response
-
-
-
[1] CELEBI M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1147-1167. doi: 10.1785/BSSA0770041147
[2] ASHFORD S A, SITAR N. Analysis of topography amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 692-700. doi: 10.1785/BSSA0870030692
[3] 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008, 16(4): 433-444. doi: 10.3969/j.issn.1004-9665.2008.04.001 YIN Yueping. Research on the geo-hazards triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(4): 433-444. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.04.001
[4] 刘晶波, 李彬. 三维黏弹性静-动力统一人工边界[J]. 中国科学(E辑), 2005, 9: 72-86. LIU Jingbo, LI Bin. A unified viscous-spring artificial boundary for 3D static and dynamic applications[J]. Science China E, 2005, 9: 72-86. (in Chinese)
[5] 赵密, 杜修力, 刘晶波等. P-SV波斜入射时成层半空间自由场的时域算法[J]. 地震工程学报, 2013, 35(1): 84-90. doi: 10.3969/j.issn.1000-0844.2013.01.0084 ZHAO Mi, DU Xiuli, LIU Jingbo, etal. Time-domain method for free field in layered half space under P-SV waves of oblique incidence[J]. Chinese Earthquake Engineering Journal, 2013, 35(1): 84-90. (in Chinese) doi: 10.3969/j.issn.1000-0844.2013.01.0084
[6] 杜修力, 赵密. 一种新的高阶弹簧-阻尼-质量边界-无限域圆柱对称波动问题[J]. 力学学报, 2009, 41(2): 207-215. doi: 10.3321/j.issn:0459-1879.2009.02.009 DU Xiuli, ZHAO Mi. A novel high-order spring-dashpot-mass boundary for cylindrical-symmetry wave motions in infinite domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 207-215. (in Chinese) doi: 10.3321/j.issn:0459-1879.2009.02.009
[7] ASHFORD S A, SITAR N, LYSMER J, DENG N. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America, 1997; 87(3): 701. doi: 10.1785/BSSA0870030701
[8] 赵密, 孙文达, 高志懂, 等. 阶梯地形成层场地的斜入射地震动输入方法[J]. 工程力学, 2019, 36(12): 62-68. ZHAO Mi, SUN Wenda, GAO Zhidong, et al. Input method of obliquely incident earthquake for step-shaped layered site[J]. Engineering Mechanics, 2019, 36(12): 62-68. (in Chinese)
[9] ZHANG X L, PENG X B, Li X J, et al. Three-Dimensional seismic response in complex site conditions: A new approach based on an auxiliary-model method[J]. Journal of Earthquake Science, 2021, 32(5): 1152-1165. doi: 10.1007/s12583-021-1471-6
[10] 巴振宁, 吴孟桃, 梁建文. 坡体几何参数与弹性模量对岩质斜坡地震动力响应的影响: IBEM求解[J]. 岩石力学与工程学报, 2019, 38(8): 1578-1592. BA Zhenning, WU Mengtao, LIANG Jianwen. Influence of geometric parameters and elastic modulus on seismic dynamic response of rock slopes by IBEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1578-1592. (in Chinese)
[11] SONG C, WOLF J P. Consistent infinitesimal finite-element-cell method: Out-of-plane motion[J]. Journal of Engineering Mechanics, 1995, 121(5): 613-619. doi: 10.1061/(ASCE)0733-9399(1995)121:5(613)
[12] WOLF J P, SONG C. Consistent infinitesimal finite-element cell method: in-plane motion[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 123(01): 355-370.
[13] SONG C M, WOLF J P. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3/4): 329-355.
[14] 李志远, 李建波, 林皋. 局部复杂场地Rayleigh波传播特性分析的SBFEM模型研究[J]. 岩土力学, 2018, 39(11): 4242–4250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811041.htm LI Zhiyuan, LI Jianbo, LIN Gao. Research on influence of partial terrain to scattering of Rayleigh wave based on SBFEM[J]. Rock and Soil Mechanics, 2018, 39(11): 4242-4250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811041.htm
[15] LI Z Y, HU Z Q, LIN G, et al. A modified scaled boundary finite element method for dynamic response of a discontinuous layered half-space[J]. Applied Mathematical Modelling, 2020, 87: 77-90.
[16] LI Y P, LI Z Y, HU Z Q, et al. Coupled FEM/SBFEM investigation on the characteristic analysis of seismic motions of a trapezoidal canyon in a layered half-space[J]. Engineering Analysis with Boundary Elements, 2021, 132: 248-262.
[17] WOLF J P. Dynamic Soil-structure Interaction[M]. Englewood-Cliffs: Prentice Hall Int., 1985.
[18] TRIFUNAC M D. Scattering of plane SH waves by a semi-cylindrical canyon[J]. Earthquake Engineering & Structural Dynamics, 1972, 1(3): 267-281.
[19] VOGT R F, WOLF J P, BACHMANN H. Wave scattering by a canyon of arbitrary shape in a layered half-space[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(6): 803-812.
-
期刊类型引用(12)
1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 . 百度学术
2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 . 百度学术
3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 . 百度学术
4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 . 百度学术
5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 . 百度学术
6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 . 百度学术
7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 . 百度学术
9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 . 百度学术
10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 . 百度学术
11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 . 百度学术
12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 . 百度学术
其他类型引用(16)