• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究

张宇, 陶连金, 刘军, 赵旭, 郭飞, 边金

张宇, 陶连金, 刘军, 赵旭, 郭飞, 边金. 考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究[J]. 岩土工程学报, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349
引用本文: 张宇, 陶连金, 刘军, 赵旭, 郭飞, 边金. 考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究[J]. 岩土工程学报, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349
ZHANG Yu, TAO Lianjin, LIU Jun, ZHAO Xu, GUO Fei, BIAN Jin. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349
Citation: ZHANG Yu, TAO Lianjin, LIU Jun, ZHAO Xu, GUO Fei, BIAN Jin. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349

考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究  English Version

基金项目: 

北京未来城市设计高精尖创新中心项目 UDC2019032824

国家重点研发计划项目 2017YFC0805403

国家重点研发计划项目 2019YFC1509704

国家自然科学基金项目 41877218

国家自然科学基金项目 42072308

详细信息
    作者简介:

    张宇(1993—),男,博士后,主要从事地下工程施工风险方面的研究工作。E-mail:411101866@qq.com

    通讯作者:

    陶连金, E-mail:ljtao@bjut.edu.cn

  • 中图分类号: U45

Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand

  • 摘要: 深埋干砂盾构隧道在施工过程中存在显著的土拱效应,如何确定考虑土拱效应的隧道掌子面极限支护力至关重要。基于极限平衡法和楔形体理论,提出了一种多层抛物线承载拱模型。根据隧道不同埋深下掌子面失稳破坏的特征和土拱类别,将隧道状态划分为浅埋隧道、过渡隧道和深埋隧道。考虑多层抛物线承载拱区域主应力偏转角和侧向土压力系数的连续性,并假定抛物线承载拱为满足合理拱轴线三铰拱结构,推导了过渡区和深埋区多层抛物线承载拱荷载传递的计算公式,进而通过极限平衡法计算得到掌子面极限支护力。将本模型计算结果与已有理论模型、模型试验和数值结果进行对比,验证了本模型计算得到的掌子面极限支护力和失稳破坏区的合理性。最后,通过参数分析讨论了土体内摩擦角对隧道浅埋和深埋分界线以及极限支护力的影响。该研究成果可为深埋干砂盾构隧道极限支护力的预测提供理论依据。
    Abstract: For the deep-buried shield tunnels in dry cohesionless soils, it is critical to determine the support pressure acting on the tunnel face due to the significant soil arching effects. Based on the limit equilibrium method and the wedge theory, a multi-layer parabolic bearing arch model is proposed. According to the characteristics of failure zone of the tunnel face and the category of soil arch under different buried depths, the tunnel state is divided into shallow buried tunnel, transition tunnel and deep buried tunnel, respectively. By considering the continuity of the principal stress deflection angle and lateral earth pressure coefficient in the multi-layer parabolic bearing arch and assuming the parabolic bearing arch as a three-hinged structural arch with reasonable arch axis, the load transfer expression for the multi-layer parabolic bearing arch is derived in transition zone and deep buried zone respectively, and then the limit support pressure is calculated. By comparing the proposed model with the existing model, model tests and numerical model, the rationality of the limit support pressure and failure zone of the tunnel face obtained by the proposed model is verified. Finally, the influences of the internal friction angle on the boundary between shallow and deep burials and the limit support pressure are discussed through parameter analysis. This study may provide a theoretical basis for predicting the limit support pressure acting on the tunnel face in dry sand.
  • 图  1   干砂地层掌子面前方失稳破坏区[12]

    Figure  1.   Failure zones in front of tunnel face in dry sand[12]

    图  2   不同埋深下的力学模型

    Figure  2.   Mechanical model under different buried depths

    图  3   极限状态下掌子面前方破坏区

    Figure  3.   Failure zones in front of tunnel face under limit state

    图  4   力学模型荷载传递路径

    Figure  4.   Load transfer path of mechanical model

    图  5   抛物线模型

    Figure  5.   Parabolic model

    图  6   C/D≥1时不同模型试验的H3/L

    Figure  6.   Results of H3/L under different model tests

    图  7   过渡隧道多层抛物线承载拱力学模型

    Figure  7.   Mechanical model for bearing arch in transition tunnel

    图  8   深埋隧道多层抛物线承载拱力学模型

    Figure  8.   Mechanical model for bearing arch in deep buried tunnel

    图  9   筒仓微分土层受力分析

    Figure  9.   Stress analysis of differential soil layers in silo

    图  10   楔形体模型受力情况

    Figure  10.   Force condition of wedge model

    图  11   参数n敏感性分析

    Figure  11.   Sensitivity analysis of parameter n

    图  12   数值模型

    Figure  12.   Numerical model

    图  13   归一化支护力与掌子面中心点水平位移关系

    Figure  13.   Relationship between σT/(γD) and horizontal displacement at central point of tunnel face

    图  14   模型计算结果与数值结果的比较

    Figure  14.   Comparison between results obtained by proposed model and numerical ones

    图  15   归一化极限支护力计算结果比较

    Figure  15.   Comparison of σT/(γD) on tunnel face

    图  16   土体内摩擦角和归一化极限支护力关系

    Figure  16.   Relationship between φ and σT/(γD)

    图  17   失稳破坏区计算结果与模型试验结果[23]对比

    Figure  17.   Comparison between calculated results of failure zone and model tests[23]

    图  18   隧道状态与土体内摩擦角的关系

    Figure  18.   Relationship between tunnel state and φ

    图  19   不同内摩擦角下深径比与归一化极限支护力的关系

    Figure  19.   Relationship between C/D and σT /(γD)

    表  1   干砂掌子面失稳的模型试验研究

    Table  1   Model tests on stability of tunnel face in dry sand

    文献 研究
    方法
    材料 深径比C/D 筒仓高度
    H3
    楔形体宽度L H3/L 内摩擦角φ 楔形体倾斜角β 归一化极限支护力σT/γD
    Chambon等[12] 离心机试验 枫丹白露砂 0.5 0.5D 0.46D 1.09 40° 73.25° 0.045/0.041
    1 0.76D 0.5D 1.52 73.22° 0.046/0.041/0.037/0.043
    2 0.84D 0.5D 1.68 74° 0.05
    4 0.051/0.064
    Oblozinsky等[17] 离心机试验 丰浦砂 2 0.59D 0.26D 2.27 32° 73.15° 0.056
    4 0.59D 0.26D 2.27 0.041
    6 0.59D 0.26D 2.27 0.085
    Chen等[7] 1g试验 长江河砂 0.5 37° 0.065
    1 0.076
    2 1.5D 0.75D 2 53° 0.072
    Takano等[18] 1g试验 丰浦砂 2 1.18D 0.5D 2.36 31.5° 69°
    Kirsch[19] 1g试验 石英砂 1 0.61D 0.35D 1.74 32° 68.44° 0.051/0.055/0.11/0.097
    Idinger等[20] 离心机试验 0.5 34° 0.038
    1 0.074
    1.5 0.67D 0.46D 1.46 68° 0.084/0.08
    Lü等[21] 1g试验 福建标准砂 0.5 0.5D 0.41D 1.22 35.7° 69.44° 0.108
    1 0.65D 0.41D 1.58 69.86° 0.116
    2 0.66D 0.41D 1.61 70.42° 0.155
    汤旅军等[22] 离心机试验 长江河砂 0.5 0.5D 0.3D 1.67 37° 71.3° 0.037
    1 0.6D 0.3D 2 0.042
    2 0.6D 0.3D 2 0.049
    Sun等[23] 1g模型试验 长江河砂 1 0.66D 31.2° 56.5° 0.073
    2 0.54D 61.5° 0.087
    3 0.46D 65.1° 0.107
    1 0.39D 35.2° 68.75° 0.094
    2 0.36D 70.1° 0.125
    3 0.31D 72.6° 0.169
    1 0.31D 40° 72.7° 0.141
    2 0.28D 74.3° 0.165
    3 0.25D 76.1° 0.200
    下载: 导出CSV

    表  2   数值模型参数

    Table  2   Parameters of numerical model

    工况 E/MPa γ/(kN·m-3) K0 ν φ/(°) c /kPa
    1 25 18 0.577 0.366 25 0
    2 25 18 0.5 0.333 30 0
    3 25 18 0.426 0.299 35 0
    4 25 18 0.357 0.263 40 0
    5 25 18 0.293 0.226 45 0
    下载: 导出CSV
  • [1] 张孟喜, 戴治恒, 张晓清, 等. 考虑主应力轴偏转的深埋盾构隧道开挖面主动极限支护压力计算方法[J]. 岩石力学与工程学报, 2021, 40(11): 2366-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111019.htm

    ZHANG Mengxi, DAI Zhiheng, ZHANG Xiaoqing, et al. A calculation method of active limit support pressure for deep shield tunnels considering principal stress axis rotation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2366-2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111019.htm

    [2] 汪丁建, 唐辉明, 李长冬, 等. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. doi: 10.11779/CJGE201605005

    WANG Dingjian, TANG Huiming, LI Changdong, et al. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. (in Chinese) doi: 10.11779/CJGE201605005

    [3] 徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm

    [4] 加瑞. 盾构隧道垂直土压力松动效应的研究[D]. 南京: 河海大学, 2007.

    JIA Rui. Study on Relaxation Effect of Vertical Soil Pressure for Shield Tunnel[D]. Nanjing: Hohai University, 2007. (in Chinese)

    [5]

    HORN N. Horizontal earth pressure on the vertical surfaces of the tunnel tubes[C]//National Conference of the Hungarian Civil Engineering Industry. Budapest, 1961.

    [6]

    ANAGNOSTOU G, KOVÁRI K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173. doi: 10.1016/0886-7798(96)00017-X

    [7]

    CHEN R P, LI J, KONG L G, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21. doi: 10.1016/j.tust.2012.08.001

    [8]

    CHEN R P, TANG L J, YIN X S, et al. An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils[J]. Acta Geotechnica, 2015, 10(5): 683-692. doi: 10.1007/s11440-014-0304-5

    [9]

    LAI H J, ZHENG J J, ZHANG R J, et al. Classification and characteristics of soil arching structures in pile-supported embankments[J]. Computers and Geotechnics, 2018, 98: 153-171. doi: 10.1016/j.compgeo.2018.02.007

    [10]

    CHEN R P, LIN X T, WU H N. An analytical model to predict the limit support pressure on a deep shield tunnel face[J]. Computers and Geotechnics, 2019, 115: 103174. doi: 10.1016/j.compgeo.2019.103174

    [11]

    WAN T, LI P F, ZHENG H, et al. An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand[J]. Computers and Geotechnics, 2019, 115: 103170. doi: 10.1016/j.compgeo.2019.103170

    [12]

    CHAMBON P, CORTÉJ F. Shallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165. doi: 10.1061/(ASCE)0733-9410(1994)120:7(1148)

    [13] 林星涛. 砂土地层盾构掘进土拱效应及其应用[D]. 长沙: 湖南大学, 2020.

    LIN Xingtao. Soil Arching Effect Induced by Shield Tunneling in Sandy Ground and Its Application[D]. Changsha: Hunan University, 2020. (in Chinese)

    [14] 张玲, 陈金海, 赵明华. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J]. 岩土力学, 2019, 40(11): 4497-4505, 4522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911041.htm

    ZHANG Ling, CHEN Jinhai, ZHAO Minghua. Maximum cantilever anti-slide piles spacing determination with consideration of soil arching effect[J]. Rock and Soil Mechanics, 2019, 40(11): 4497-4505, 4522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911041.htm

    [15] 陈冲, 王卫, 吕华永. 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学, 2019, 40(8): 3207-3217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908038.htm

    CHEN Chong, WANG Wei, LÜ Huayong. Stability analysis of slope reinforcement based on composite anti-slide pile model[J]. Rock and Soil Mechanics, 2019, 40(8): 3207-3217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908038.htm

    [16]

    TERZAGHI K. Theoretical Soil Mechanics[M]. London: Chapman and Hall, limited, 1943.

    [17]

    OBLOZINSKY P, KUWANO J. Centrifuge experiments on stability of tunnel face in sandy ground[J]. Slovak J Civ Eng. 2004, 3: 23-9.

    [18]

    TAKANO D, OTANI J, NAGATANI H, et al. Application of X-ray CT on boundary value problems in geotechnical engineering: research on tunnel face failure[C]//GeoCongress 2006. Atlanta, Georgia, USA. Reston, VA: American Society of Civil Engineers, 2006.

    [19]

    KIRSCH A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1): 43-62.

    [20]

    IDINGER G, AKLIK P, WU W, et al. Centrifuge model test on the face stability of shallow tunnel[J]. Acta Geotechnica, 2011, 6(2): 105-117.

    [21]

    LÜX L, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195-205.

    [22] 汤旅军, 陈仁朋, 尹鑫晟, 等. 密实砂土地层盾构隧道开挖面失稳离心模型试验研究[J]. 岩土工程学报, 2013, 35(10): 1830-1838. http://cge.nhri.cn/cn/article/id/15302

    TANG Lüjun, CHEN Renpeng, YIN Xincheng, et al. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838. (in Chinese) http://cge.nhri.cn/cn/article/id/15302

    [23]

    SUN X H, MIAO L C, LIN H S, et al. Soil arch effect analysis of shield tunnel in dry sandy ground[J]. International Journal of Geomechanics, 2018, 18(6): 04018057.

    [24] 武军, 廖少明, 时振昊. 考虑土拱效应的盾构隧道开挖面稳定性[J]. 同济大学学报(自然科学版), 2015, 43(2): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201502009.htm

    WU Jun, LIAO Shaoming, SHI Zhenhao. Workface stability of shield tunnel considering arching effect[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 213-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201502009.htm

    [25]

    LI P F, WANG F, ZHANG C P, et al. Face stability analysis of a shallow tunnel in the saturated and multilayered soils in short-term condition[J]. Computers and Geotechnics, 2019, 107: 25-35.

    [26]

    LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4): 581-606.

    [27]

    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 215-229.

图(19)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-13
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回