UH model and parameter inversion for crushable sands
-
摘要: 颗粒破碎对粒状土临界状态的影响十分显著,研究认为在e-lnp空间内,粒状土的临界状态线会随着破碎的进行向下漂移,而捕捉颗粒破碎量与临界状态线漂移量之间的一一映射关系是一项巨大的挑战。通过引入颗粒破碎参数eB对砂土UH模型进行了修正,并将其嵌入实数编码免疫遗传算法(RIGA)中,构建了RIGA-MUH模型,提出了可获取不同破碎程度下临界状态线的新方法。为得到更加准确的临界状态参数,模型通过调整粒状土临界状态下在误差函数中的权重比进行优化改进,并通过Toyoura砂和Cambria砂的常规排水三轴压缩试验结果,验证模型的稳定性、合理性和准确性。结果表明,该模型可以得到某一颗粒破碎量下精度较高的临界状态线,为提出考虑颗粒破碎的本构方程提供一种新方法。Abstract: The effect of particle breakage on the critical state of granular soils is of great significance. The existing studies have shown that the critical state line (CSL) of granular soils in the e-lnp space shifts downward as a result of particle breakage. However, it remains a big challenge for capturing the degree of particle breakage and the movement of CSL. In this study, the UH model for sands is modified by introducing the particle breakage parameter eB and embedded in the real number encoding immune genetic algorithm (RIGA) to establish the RIGA-MUH model, which proposes a new method that can obtain the CSLs for the sands with varying particle-size distributions. The model is optimized and improved to obtain more accurate critical state parameters by adjusting the weight ratio in the error function under the critical state of granular soils. The stability, rationality and accuracy of the model are verified through the results of conventional drainage triaxial compression tests on the Toyoura sand and Cambria sand. The results show that the proposed model can be used to obtain the CSLs with high accuracy under a certain amount of particle breakage, which provides new insight into the constitutive modeling of crushable sands.
-
-
表 1 Toyoura砂UH模型参数
Table 1 UH model parameters of Toyoura sand
M χ ν Z m λ κ N 1.25 0.55 0.3 0.943 1.8 0.135 0.04 1.973 表 2 RGA-MUH模型超参数
Table 2 Hyperparameters of RGA-MUH model
参数名称 RGA参数取值 种群规模N 50 变异概率pm 0.7 选择操作后个体数M 25 最大迭代次数G 100 变异系数δm 0.5 表 3 RIGA-MUH模型免疫超参数分析试验方案及结果
Table 3 Experimental protocols and results of immune hyperparameter analysis of RIGA-MUH model
试验号 激励度系数α 克隆次数Nc 相似度阈值δs 试验结果 1 1(0.3) 1(3) 1(0.1) 0.621 2 1 2(6) 2(0.2) 0.603 3 1 3(9) 3(0.3) 0.610 4 2(0.6) 1 2 0.623 5 2 2 3 0.594 6 2 3 1 0.622 7 3(0.9) 1 3 0.597 8 3 2 1 0.596 9 3 3 2 0.597 表 4 各参数方差分析
Table 4 Analysis of variance for each parameter
方差来源 平方和 自由度 均方差 F值 激励度系数α 0.000494 2 0.000247 5.501 克隆次数Nc 0.000457 2 0.000229 5.100 相似度阈值δs 0.000284 2 0.000142 3.163 空列误差 0.0000897 2 0.0000449 总和 0.00132 8 表 5 RIGA-MUH模型参数
Table 5 Parameters of RIGA-MUH model
M ν Z m λ κ N 1.45 0.1 0.61 3 0.112 0.0102 1.5578 表 6 不同围压下颗粒破碎指标Br
Table 6 Values of Br under different confining pressures
围压/kPa 5800 8000 11500 15000 17200 Br 0.151 0.247 0.280 0.341 0.340 表 7 RIGA-MUH模型和RGA-MUH模型预测结果
Table 7 Predicted results of RIGA-MUH and RGA-MUH models
参数名称 围压/MPa 5.8 8.0 11.5 15.0 17.2 RIGA χ 0.886 0.899 0.883 0.866 0.843 eB 0.072 0.090 0.114 0.215 0.237 RGA χ 0.827 0.883 0.926 0.883 0.816 eB 0.115 0.151 0.088 0.228 0.266 -
[1] 张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm ZHANG Jiaming, JIANG Guosheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm
[2] TONG C X, BURTON G J, ZHANG S, et al. Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests[J]. Acta Geotechnica, 2020, 15(9): 2379-2394. doi: 10.1007/s11440-020-00931-x
[3] TONG C X, ZHAI M Y, LI H C, et al. Particle breakage of granular soils: changing critical state line and constitutive modelling[J]. Acta Geotechnica, 2022, 17(3): 755-768. doi: 10.1007/s11440-021-01231-8
[4] WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
[5] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
[6] DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics - A/Solids, 2001, 20(1): 113-137. doi: 10.1016/S0997-7538(00)01130-X
[7] BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
[8] LI G, LIU Y J, DANO C, et al. Grading-dependent behavior of granular materials: from discrete to continuous modeling[J]. Journal of Engineering Mechanics, 2015, 141(6): 276-285.
[9] 兰鹏, 李海潮, 叶新宇, 等. PINNs算法及其在岩土工程中的应用研究[J]. 岩土工程学报, 2021, 43(3): 586-592. doi: 10.11779/CJGE202103023 LAN Peng, LI Haichao, YE Xinyu, et al. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. (in Chinese) doi: 10.11779/CJGE202103023
[10] HOLLAND J. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University of Michigan Press, 1975.
[11] WANG L, TANG D B. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem[J]. Expert Systems With Applications, 2011, 38(6): 7243-7250. doi: 10.1016/j.eswa.2010.12.027
[12] 王煦法, 张显俊, 曹先彬, 等. 一种基于免疫原理的遗传算法[J]. 小型微型计算机系统, 1999, 20(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm WANG Xufa, ZHANG Xianjun, CAO Xianbin, et al. An improved genetic algorithm based on immune principle[J]. Mini-Micro Systems, 1999, 20(2): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm
[13] HAN H, DING Y S, HAO K R, et al. An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking[J]. Computers & Mathematics With Applications, 2011, 62(7): 2685-2695.
[14] YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 179-191. doi: 10.1007/s11431-008-0011-2
[15] YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
[16] YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
[17] YAO Y P, WANG N B, CHEN D. UH model for granular soils considering low confining pressure[J]. Acta Geotechnica, 2021, 16(6): 1815-1827. doi: 10.1007/s11440-020-01084-7
[18] 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002 YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
[19] DE BONO J P, MCDOWELL G R. Micro mechanics of the critical state line at high stresses[J]. Computers and Geotechnics, 2018, 98: 181-188. doi: 10.1016/j.compgeo.2018.02.016
[20] RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. doi: 10.1139/t04-065
[21] KIKUMOTO M, WOOD D M, RUSSELL A. Particle crushing and deformation behaviour[J]. Soils and Foundations, 2010, 50(4): 547-563.
[22] VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
[23] YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering, 1996, 122(2): 109-119.
[24] 史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. doi: 10.11779/CJGE202202014 SHI Jinquan, XIAO Yang, LIU Hanlong, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) doi: 10.11779/CJGE202202014
[25] XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031.
[26] WANG L, MENG M Q, LIU H L, et al. Numerical investigation on the effect of grain crushing process on critical state on rockfill material[M]//Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021: 295-302.
[27] HU W, YIN Z Y, SCARINGI G, et al. Relating fragmentation, plastic work and critical state in crushable rock clasts[J]. Engineering Geology, 2018, 246: 326-336.
-
期刊类型引用(5)
1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 . 百度学术
2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 . 百度学术
3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 . 百度学术
4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 . 百度学术
5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 . 百度学术
其他类型引用(4)
-
其他相关附件