• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

主动平移模式下墙后非饱和砂土破坏模式及侧向土压力分布试验研究

邓波, 杨明辉, 赵明华

邓波, 杨明辉, 赵明华. 主动平移模式下墙后非饱和砂土破坏模式及侧向土压力分布试验研究[J]. 岩土工程学报, 2023, 45(1): 94-102. DOI: 10.11779/CJGE20211280
引用本文: 邓波, 杨明辉, 赵明华. 主动平移模式下墙后非饱和砂土破坏模式及侧向土压力分布试验研究[J]. 岩土工程学报, 2023, 45(1): 94-102. DOI: 10.11779/CJGE20211280
DENG Bo, YANG Minghui, ZHAO Minghua. Experimental study on failure mode and lateral earth pressure distribution of unsaturated sand behind retaining walls under active translation mode[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 94-102. DOI: 10.11779/CJGE20211280
Citation: DENG Bo, YANG Minghui, ZHAO Minghua. Experimental study on failure mode and lateral earth pressure distribution of unsaturated sand behind retaining walls under active translation mode[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 94-102. DOI: 10.11779/CJGE20211280

主动平移模式下墙后非饱和砂土破坏模式及侧向土压力分布试验研究  English Version

基金项目: 

湖南省自然科学青年基金项目 2021JJ40460

国家自然科学基金项目 51678230

湖南省教育厅科学研究项目一般项目 210SJY090

详细信息
    作者简介:

    邓波(1991—),男,博士,讲师,主要从事非饱和土力学理论与应用等方面的研究工作。E-mail: parl_d@126.com

    通讯作者:

    杨明辉, E-mail: yamih@hnu.edu.cn

  • 中图分类号: TU432

Experimental study on failure mode and lateral earth pressure distribution of unsaturated sand behind retaining walls under active translation mode

  • 摘要: 在主动平移模式下,开展一系列不同墙面粗糙度和砂土含水率情况下刚性挡墙主动土压力室内模型试验,通过渗压计和土压力盒分别监测了基质吸力和土压力的变化,并基于DIC图像关联技术获取破裂面位置,进而分析了基质吸力和界面粗糙度对主动土压力和土体破裂面形状的影响。试验结果表明:随着含水率增加,砂土破裂面逐渐向外移,原因在于当砂土基质吸力大于其进气值时,吸应力随基质吸力的增大而减小,进而使土体抗剪强度降低;达到主动极限状态后,破裂面过墙踵,但比库仑破裂面要浅,二者差异随基质吸力减少而增小;墙土界面摩擦对滑动破裂面形状的影响很小。此外,主动土压力在墙体中上部区域,随着深度增加而近似呈线性增大,但在墙踵附近区域,松砂传递的摩阻力使土压力出现略有减小;实测主动土压力值始终小于库仑主动土压力值,其差值随着含水率的增大而增大;相比摩擦角的影响,吸应力对土压力作用更为明显。
    Abstract: Under the active translation mode, a series of laboratory model tests on the active earth pressure against rigid retaining walls with different wall roughnesses and water contents of backfill are carried out, in which the matric suction and earth pressure are monitored by embedding the piezometer and earth pressure cell, respectively, and the position of the failure surface is obtained by using the DIC technique, and the effects of the matric suction and interface roughness on the earth pressure and the shape of the failure surface are discussed. The test results show that with the increase of the water content, the failure surface tends to move outward. The reason is that when the matric suction of sand is greater than its air entry value, the suction stress decreases with the increase of the matric suction, which in turn reduces the shear strength of the soil. After reaching the active limit state, the fracture surface passes the wall heel but is shallower than the Coulomb failure surface, and the difference between them increases with the decrease of the matric suction. The wall-soil interface friction has a few effects on the shape of failure surface. Furthermore, in the middle and upper parts of the wall, the active earth pressure increases approximately linearly with the increase of depth, but in the area near the heel of the wall, the earth pressure shows a slight decrease, which is mainly caused by the frictional resistance transmitted by loose sand. The measured active earth pressure is always smaller than that of Coulomb active earth pressure, and the difference increases with the increase of the water content. Compared with the influences of the friction angle, the suction stress has a more obvious effect on the earth pressure.
  • 图  1   试验系统结构图

    Figure  1.   Setup of testing system

    图  2   轴承传动系统

    Figure  2.   Bearing drive system

    图  3   渗压计标定装置

    Figure  3.   Calibration device of piezometer

    图  4   渗压计标定结果

    Figure  4.   Calibrated results of piezometer

    图  5   渗压计位置布设

    Figure  5.   Location of piezometers

    图  6   土压力盒位置布设

    Figure  6.   Location of earth pressure cells

    图  7   DIC分析平面区域

    Figure  7.   Planar area for conducting DIC analysis

    图  8   颗粒级配曲线

    Figure  8.   Grain-size distribution curve

    图  9   基质吸力与体积含水率的关系

    Figure  9.   Relationship between matric suction and volumetric water content

    图  10   砂体整体下沉

    Figure  10.   Integral settlements of sand

    图  11   挡墙移动过程中破坏面的演化过程

    Figure  11.   Evolution process of failure surface during movement of retaining wall

    图  12   破裂面几何形状的确定方法

    Figure  12.   Method for determining geometry of failure surface

    图  13   墙后土体位移-时间曲线

    Figure  13.   Displacement-time curves of soil behind wall

    图  14   不同工况下砂土破裂面

    Figure  14.   Failure surfaces of sand under different test conditions

    图  15   各试验工况的基质吸力值

    Figure  15.   Values of matric suction of various test conditions

    图  16   随墙体移动的土压力分布

    Figure  16.   Distribution of earth pressure with wall movement

    表  1   有效剪切强度参数

    Table  1   Effective shear strength parameters

    砂土-光滑墙面 砂土-粗糙墙面 砂土
    ca/kPa δ'/(°) ca/kPa δ'/(°) c'/kPa φ/(°)
    0 7.4 0 14 0 33.6
    下载: 导出CSV

    表  2   试验工况编号

    Table  2   Number of test conditions

    墙面类型 含水率
    0% 3% 5% 8%
    光滑面 LEP1 LEP3 LEP5 LEP7
    粗糙面 LEP2 LEP4 LEP6 LEP8
    下载: 导出CSV
  • [1] 宋飞, 张建民. 考虑侧向变形的各向异性砂土土压力试验研究[J]. 岩石力学与工程学报, 2009, 28(9): 1884-1895. doi: 10.3321/j.issn:1000-6915.2009.09.021

    SONG Fei, ZHANG Jianmin. Experimental study of earth pressure for anisotropic sand considering lateral displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1884-1895. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.021

    [2] 曲宏略, 张建经. 地基条件对挡土墙地震土压力影响的振动台试验研究[J]. 岩土工程学报, 2012, 34(7): 1227-1233. http://cge.nhri.cn/cn/article/id/14630

    QU Honglue, ZHANG Jianjing. Shaking table tests on influence of site conditions on seismic earth pressures of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1227-1233. (in Chinese) http://cge.nhri.cn/cn/article/id/14630

    [3]

    GUTBERLET C, KATZENBACH R, HUTTER K. Experimental investigation into the influence of stratification on the passive earth pressure[J]. Acta Geotechnica, 2013, 8(5): 497-507. doi: 10.1007/s11440-013-0270-3

    [4] 李浩, 罗强, 张良, 等. 不同位移模式下衡重式路肩墙离心模型试验研究[J]. 岩土工程学报, 2015, 37(4): 675-682. doi: 10.11779/CJGE201504013

    LI Hao, LUO Qiang, ZHANG Liang, et al. Centrifugal model tests on shoulder balance weight retaining wall with various motion modes[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 675-682. (in Chinese) doi: 10.11779/CJGE201504013

    [5]

    KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Theoretical analysis of earth pressure against rigid retaining walls under translation mode[J]. Soils and Foundations, 2016, 56(4): 664-675. doi: 10.1016/j.sandf.2016.07.007

    [6] 杨明辉, 戴夏斌, 赵明华, 等. 墙后有限宽度无黏性土主动土压力试验研究[J]. 岩土工程学报, 2016, 38(1): 131-137. doi: 10.11779/CJGE201601014

    YANG Minghui, DAI Xiabin, ZHAO Minghua, et al. Experimental study on active earth pressure of cohesionless soil with limited width behind retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 131-137. (in Chinese) doi: 10.11779/CJGE201601014

    [7]

    RUI R, YE Y Q, HAN J, et al. Experimental and theoretical investigations on active earth pressure distributions behind rigid retaining walls with narrow backfill under a translational mode[J]. International Journal of Geomechanics, 2020, 20(10): 04020178. doi: 10.1061/(ASCE)GM.1943-5622.0001832

    [8] 应宏伟, 张金红, 王小刚, 等. 有限土体刚性挡墙平动模式被动土压力试验研究[J]. 岩土工程学报, 2016, 38(6): 978-986. doi: 10.11779/CJGE201606002

    YING Hongwei, ZHANG Jinhong, WANG Xiaogang, et al. Experimental analysis of passive earth pressure against rigid retaining wall under translation mode for finite soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 978-986. (in Chinese) doi: 10.11779/CJGE201606002

    [9]

    ALPER K H, SADOĞLU E. Experimental and theoretical investigation of short- and long-heel cases of cantilever retaining walls in active state[J]. International Journal of Geomechanics, 2019, 19(5): 04019023. doi: 10.1061/(ASCE)GM.1943-5622.0001389

    [10] 方焘, 杨思敏, 徐长节, 等. 浸水条件下有限土体土压力试验研究与数值分析[J]. 地下空间与工程学报, 2019, 15(6): 1699-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906014.htm

    FANG Tao, YANG Simin, XU Changjie, et al. Experimental research and numerical analysis on active soil pressure of limited soil under water immersion[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1699-1708. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906014.htm

    [11]

    DONG X X, CHEN Y G, YE W M, et al. Effect of initial suction on the stiffness and strength of densely compacted Gaomiaozi bentonite[J]. Applied Clay Science, 2020, 194: 105696. doi: 10.1016/j.clay.2020.105696

    [12]

    LU N, GODT J W. Hillslope hydrology and stability[M]. New York: Cambridge University Press, 2013.

    [13]

    FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: Wiley, 1993.

    [14]

    LU N, LIKOS W J. Unsaturated soil mechanics[M]. Hoboken, NJ: Wiley, 2004.

    [15] 赵均海, 梁文彪, 张常光, 等. 非饱和土库仑主动土压力统一解[J]. 岩土力学, 2013, 34(3): 609-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303000.htm

    ZHAO Junhai, LIANG Wenbiao, ZHANG Changguang, et al. Unified solution of Coulomb's active earth pressure for unsaturated soils[J]. Rock and Soil Mechanics, 2013, 34(3): 609-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303000.htm

    [16]

    VAHEDIFARD F, LESHCHINSKY B A, MORTEZAEI K, et al. Active earth pressures for unsaturated retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(11): 04015048.

    [17]

    LI Z W, YANG X L. Active earth pressure for soils with tension cracks under steady unsaturated flow conditions[J]. Canadian Geotechnical Journal, 2018, 55(12): 1850-1859.

    [18]

    SHAHROKHABADI S, VAHEDIFARD F, GHAZANFARI E, et al. Earth pressure profiles in unsaturated soils under transient flow[J]. Engineering Geology, 2019, 260: 105218.

    [19] 李加贵, 陈正汉, 黄雪峰, 等. 原状非饱和Q3黄土的土压力原位测试和强度特性研究[J]. 岩土力学, 2010, 31(2): 433-440. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002023.htm

    LI Jiagui, CHEN Zhenghan, HUANG Xuefeng, et al. In-site test on earth pressure and saturating collapse test for unsaturated loess Q3 on high slope[J]. Rock and Soil Mechanics, 2010, 31(2): 433-440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201002023.htm

    [20] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    [21]

    VO T, TAIEBAT H, RUSSELL A R. Interaction of a rotating rigid retaining wall with an unsaturated soil in experiments[J]. Géotechnique, 2016, 66(5): 366-377.

    [22]

    DE CAMPOS T M P, DE VIANA A C, SILVA T A, et al. Evaluation of the At-rest coefficient of earth pressure in unsaturated residual soil with a new suction-controlled device[J]. Geotechnical Testing Journal, 2021, 44(2): 20190438.

    [23] 戴福隆, 沈观林, 谢惠民. 实验力学[M]. 北京: 清华大学出版社, 2010.

    DAI Fulong, SHEN Guanlin, XIE Huimin. Experimental Mechanics[M]. Beijing: Tsinghua University Press, 2010. (in Chinese)

    [24]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

    [25]

    KISHIDA H, UESUGI M. Tests of the interface between sand and steel in the simple shear apparatus[J]. Géotechnique, 1987, 37(1): 45-52.

    [26]

    DENG B, YANG M H. Analysis of passive earth pressure for unsaturated retaining structures[J]. International Journal of Geomechanics, 2019, 19(12): 06019016.

    [27]

    LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil[J]. Water Resources Research, 2010, 46(5): W05515.

    [28]

    FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.

    [29]

    SOLTANBEIGI B, ALTUNBAS A, GEZGIN A T, et al. Determination of passive failure surface geometry for cohesionless backfills[J]. Periodica Polytechnica Civil Engineering, 2020: 64(4): 1100-1110.

    [30]

    SUITS L D, SHEAHAN T C, LIKOS W J, et al. Modified direct shear apparatus for unsaturated sands at low suction and stress[J]. Geotechnical Testing Journal, 2010, 33(5): 102927.

    [31]

    ZHOU A N, SHENG D, CARTER J P. Modelling the effect of initial density on soil-water characteristic curves[J]. Géotechnique, 2012, 62(8): 669-680.

    [32]

    JAKY J. Pressure in soils[C]// Proceeding of the 2nd International Conference on Soil Mechanics and Foundation Engineering. Rotterdam, 1948.

  • 其他相关附件

图(16)  /  表(2)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  45
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2023-02-03
  • 发布日期:  2021-10-31
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回