Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水泥胶结钙质砂热传导特性及微观机制

曾召田, 付慧丽, 吕海波, 梁珍, 于海浩

曾召田, 付慧丽, 吕海波, 梁珍, 于海浩. 水泥胶结钙质砂热传导特性及微观机制[J]. 岩土工程学报, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
引用本文: 曾召田, 付慧丽, 吕海波, 梁珍, 于海浩. 水泥胶结钙质砂热传导特性及微观机制[J]. 岩土工程学报, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
Citation: ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021

水泥胶结钙质砂热传导特性及微观机制  English Version

基金项目: 

国家自然科学基金项目 42167020

国家自然科学基金项目 41962014

广西自然科学基金项目 2018GXNSFAA138182

广西自然科学基金项目 2018GXNSFDA281038

广西自然科学基金项目 GXNSFGA380004

广西科技基地和人才专项 桂科D20325010

详细信息
    作者简介:

    曾召田(1981— ),男,博士,教授,主要从事环境岩土工程专业研究。E-mail:zengzhaotian@163.com

    通讯作者:

    吕海波, E-mail:lhb@glut.edu.cn

  • 中图分类号: TU443

Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand

  • 摘要: 南海岛礁建设中,钙质砂地基面临的高温环境问题需要全面掌握钙质砂热传导性能的演变规律。基于热探针法测定了不同试验条件下水泥胶结钙质砂的导热系数λ,探讨了水灰比W/C、养护时间t、胶结程度(水泥掺量Ps)、含水率w等因素对其产生的影响规律,发现水泥胶结钙质砂的导热系数λ随养护龄期t的增加呈现出先急剧增大而后缓慢减小的变化规律,随水泥掺量Ps、含水率w的增加而递增,随水灰比W/C的增加反而递减;在此基础上,利用电镜扫描和压汞试验从微观角度解释了水泥胶结钙质砂导热系数随胶结程度的变化趋势:水泥胶结钙质砂内微孔隙大小、数量的变化从本质上决定了其宏观热传导特性,凝胶状水化产物连续填充其内部孔隙,引起其孔隙率降低,改善砂样内部传热,宏观表现为其导热系数λ随着胶结程度的增加而递增。
    Abstract: In the construction of islands and reefs in the South China Sea, the high-temperature environment problem of calcareous sand foundation requires a comprehensive understanding of the evolution laws of calcareous sand thermal conductivity. Based on the thermal probe method, the thermal conductivity of cement-cemented calcareous sand under different test conditions is determined, and the variation laws of the influence factors such as water-cement ratio, curing period, cementing degree (cement content) and moisture content on the thermal conductivity are discussed. It is found that the thermal conductivity of the cement-cemented calcareous sand increases sharply firstly and then decreases slowly with the increasing curing period. At the same time, the thermal conductivity increases with the increase of the cement content and moisture content, and decreases with the increase of the water cement ratio. On this basis, the trend of thermal conductivity of the cement-cemented calcareous sand with the degree of cementation is explained by the scanning electron microscope and mercury intrusion porosimetry tests. The result shows that the macroscopic thermal conduction characteristics of the cement-cemented sand are determined by the variation of size and quantity of its micro-pores. The gelatinous hydration products continuously fill the internal pores of cemented sand, causing a reduction in porosity and improving the internal heat transfer of the sand sample. At the macro level, the thermal conductivity increases with the degree of cementation.
  • 图  1   钙质砂样

    Figure  1.   Calcareous sand

    图  2   水泥胶结钙质砂导热系数随养护时间的变化曲线

    Figure  2.   Variation curves of thermal conductivity of cement -cemented calcareous sand with curing time

    图  3   水泥胶结钙质砂水化过程示意图

    Figure  3.   Diagram of hydration process of cement-cemented calcareous sand

    图  4   水泥胶结钙质砂导热系数随水泥掺量的变化曲线

    Figure  4.   Variation curves of thermal conductivity of cement-cemented calcareous sand with cement content

    图  5   不同水灰比的水泥胶结钙质砂导热系数对比分析

    Figure  5.   Comparative analysis of thermal conductivity of cement -cemented calcareous sand with different water-cement ratios

    图  6   水泥胶结钙质砂导热系数随含水率的变化曲线

    Figure  6.   Variation curves of thermal conductivity of cement-cemented calcareous sand with water content

    图  7   电镜扫描图像(×200)

    Figure  7.   Scanning images of electron microscope(×200)

    图  8   水泥胶结钙质砂电镜扫描图像(×2000,Ps=10%)

    Figure  8.   Scanning image of electron microscope of cement-cemented calcareous sand(×2000,Ps=10%)

    图  9   胶结钙质砂孔隙孔径分布曲线

    Figure  9.   Pore-size distribution curves of cemented calcareous sand

    表  1   钙质砂的基本物理性质指标

    Table  1   Basic physical properties of calcareous sand

    Gs最小干密度ρdmin/(g·cm-3)最大干密度ρdmax/(g·cm-3)相对密实度Dr限制粒径d60/mm有效粒径d10/mm不均匀系数Cu(d60/d10)颗粒组成/%
    <0.075 mm<0.25 mm<0.5 mm<1 mm<2 mm
    2.731.041.390.530.4200.1383.042.929.867.894.6100
    下载: 导出CSV

    表  2   水泥熟料的主要化学成分

    Table  2   Main chemical components of cement clinker

    化学成分CaOSiO2Al2O3Fe2O3
    含量/%62~6720~244~72.5~6
    下载: 导出CSV

    表  3   水泥胶结钙质砂样品制备数量

    Table  3   Sample numbers of cement-cemented calcareous sand

    W/CPs=5.0%Ps=7.5%Ps=10.0%Ps=12.5%Ps=15.0%
    0.62个2个2个2个2个
    0.92个2个2个2个2个
    下载: 导出CSV

    表  4   极端含水状态水泥胶结钙质砂导热系数及比值

    Table  4   Thermal conductivity and its ratio of cement-cemented calcareous sand under extreme water bearing state

    Ps/%W/C=0.6W/C=0.9
    λ干燥/(W·m·K-1)λ饱水/(W·m·K-1)λλλ干燥/(W·m·K-1)λ饱水/(W·m·K-1)λλ
    5.00.3450.9922.880.3150.9853.13
    7.50.3090.9713.140.2280.9574.20
    10.00.3241.0133.130.2470.9723.94
    12.50.2980.9973.350.2210.9534.31
    15.00.3121.0003.210.2410.9744.04
    下载: 导出CSV

    表  5   天然钙质砂和水泥胶结钙质砂孔隙统计参数

    Table  5   Statistical parameters of pores of natural calcareous sand and cement-cemented calcareous sand

    孔隙统计参数图像面积总孔隙区域面积孔隙数量孔隙占比
    天然钙质砂Ps=0%71475223929926433.48
    水泥胶结钙质砂P s =5.0%71475254792697.67
    Ps =10.0%7147526390110.89
    Ps =15.0%714752534980.75
    下载: 导出CSV

    表  6   不同水泥掺量胶结钙质砂孔隙结构特征参数统计表

    Table  6   Statistical parameters of pores of cement-cemented calcareous sand with different cement contents

    水泥掺量Ps /%总进汞体积/(mL·g-1)总孔面积/(m2·g-1)孔隙率/%
    0.00.397018.68151.8218
    5.00.35139.71146.9556
    10.00.29018.87639.0809
    15.00.22315.68830.6353
    下载: 导出CSV
  • [1] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, 16(4): 74-83. doi: 10.16285/j.rsm.1995.04.010

    LIU Chong-quan, YANG Zhi-qiang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(4): 74-83. (in Chinese) doi: 10.16285/j.rsm.1995.04.010

    [2] 汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.

    WANG Ren, SONG Chao-jing, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)

    [3] 刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44.

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese)

    [4] 何绍衡, 夏唐代, 李玲玲, 等. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38(12): 2535-2549. doi: 10.13722/j.cnki.jrme.2019.0170

    HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al. Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2535-2549. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0170

    [5]

    LIU H, LIU H L, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58(6): 1326-1338. doi: 10.1016/j.sandf.2018.07.010

    [6] 付慧丽, 莫红艳, 曾召田, 等. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(增刊2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm

    FU Hui-li, MO Hong-yan, ZENG Zhao-tian, et al. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm

    [7] 肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm

    XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm

    [8] 王丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J]. 实验力学, 2009, 24(2): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm

    WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental investigation on cementation of calcareous sand and its basic mechanical characteristics[J]. Journal of Experimental Mechanics, 2009, 24(2): 133-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm

    [9] 李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10): 1931-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm

    LI Hao, TANG Chao-sheng, LIU Bo, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm

    [10]

    CHANEY R C, DEMARS K R, ISMAIL M A, et al. Sample preparation technique for artificially cemented soils[J]. Geotechnical Testing Journal, 2000, 23(2): 171.

    [11] 朱长歧, 周斌, 刘海峰. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6): 1655-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm

    ZHU Chang-qi, ZHOU Bin, LIU Hai-feng. Investigation on strength and microstracture of naturally cemented calcareous soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1655-1663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm

    [12] 方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. Experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    [13] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese)

    [14] 郑俊杰, 吴超传, 宋杨, 等. MICP胶结钙质砂的强度试验及强度离散性研究[J]. 哈尔滨工程大学学报, 2020, 41(2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm

    ZHENG Jun-jie, WU Chao-chuan, SONG Yang, et al. Study of the strength test and strength dispersion of MICP-treated calcareous sand[J]. Journal of Harbin Engineering University, 2020, 41(2): 250-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm

    [15]

    CUI M J, ZHENG J J, DAHAL B K, et al. Effect of waste rubber particles on the shear behaviour of bio-cemented calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1429-1439.

    [16] 董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    DONG Bo-wen, LIU Shi-yu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    [17] 普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 2003.

    Standard for Test Methods of Mechanical Properties on Ordinary Concrete: GB/T 50081—2002[S]. 2003. (in Chinese)

    [18] 胡明鉴, 蒋航海, 崔翔, 等. 钙质砂电导率与相关性问题初探[J]. 岩土力学, 2017, 38(增刊2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm

    HU Ming-jian, JIANG Hang-hai, CUI Xiang, et al. Preliminary study of conductivity and correlation problems of calcareous sand[J]. Rock and Soil Mechanics, 2017, 38(S2): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm

    [19]

    JEONG J H, KIM N. A thermal conductivity model for hydrating concrete pavements[J]. Journal of the Korea Concrete Institute, 2004, 16(1): 125-129.

    [20] 李林香, 谢永江, 冯仲伟, 等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(6): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm

    LI Lin-xiang, XIE Yong-jiang, FENG Zhong-wei, et al. Cement hydration mechanism and research methods[J]. Concrete, 2011(6): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm

    [21] 徐云山, 曾召田, 孙德安, 等. 高温下含湿土壤水汽潜热效应的试验研究[J]. 防灾减灾工程学报, 2017, 37(4): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm

    XU Yun-shan, ZENG Zhao-tian, SUN De-an, et al. Experimental study on latent heat effect of moist soil at high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 593-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm

    [22]

    XU Y S, SUN D A, ZENG Z T, et al. Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range[J]. International Journal of Heat and Mass Transfer, 2019, 138: 562-570.

    [23] 孙红萍, 袁迎曙, 蒋建华, 等.表层混凝土导热系数规律的试验研究[J]. 混凝土, 2009(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm

    SUN Hong-ping, YUAN Ying-shu, JIANG Jian-hua, et al. Experimental study on thermal conductivity of the surface layer concretes[J]. Concrete, 2009(5): 59-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm

    [24] 曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm

    ZENG Zhao-tian, FAN Li-yun, MO Hong-yan, et al. Experimental study of influence factors of soil thermal conductivity[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm

    [25] 曾召田, 赵艳林, 吕海波, 等. 广西红黏土热物理特性及影响因素试验研究[J]. 岩土工程学报, 2018, 40(增刊1): 252-258, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm

    ZENG Zhao-tian, ZHAO Yan-lin, LÜ Hai-bo, et al. Experimental study on thermal properties of red clay in Guangxi Province and its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 252-258, 134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm

    [26] 张丙树, 顾凯, 李金文, 等. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 2020, 28(4): 725-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm

    ZHANG Bing-shu, GU Kai, LI Jin-wen, et al. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 2020, 28(4): 725-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm

  • 期刊类型引用(4)

    1. 许旭堂,陈翔龙,杨枫,鲜振兴,徐祥. 循环荷载对充填结构面岩体剪切特性的影响. 长安大学学报(自然科学版). 2025(01): 24-37 . 百度学术
    2. 杜淼然,尹培杰,张越,晏长根,欧运起,付弘哲. 基于分形特征的3D打印岩石结构面剪切特性研究. 工程地质学报. 2025(02): 458-470 . 百度学术
    3. 班力壬,杜伟升,候宇航,戚承志,陶志刚. 考虑实际接触三维粗糙度退化的软岩节理剪胀规律预测模型. 岩土工程学报. 2024(05): 1008-1017 . 本站查看
    4. 焦峰,许江,彭守建,何美鑫,张心睿,程亮. 常法向刚度条件下人工结构面剪切力学特性及损伤演化规律试验研究. 煤炭学报. 2023(11): 4065-4077 . 百度学术

    其他类型引用(7)

图(9)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回