Measuring absolute volume of triaxial soil specimens
-
摘要: 三轴试验过程中的土样体积是用于分析土体应力应变特性所需的一个基本参数。近年来,基于图像分析的方法越来越广泛地应用于土样在三轴试验过程中的体积测量。然而,基于图像分析方法测量所得结果仅仅是试样的相对体积变化,并非试样绝对体积。为了测量三轴试验过程中试样的绝对体积,综合运用摄影测量原理、光线追踪、和最小二乘优化技术,测定了覆盖试样表面点云的三维位置;通过对点云进行三角网格划分、端部截断、插值、并扣除橡皮膜体积计算得到土样在三轴试验过程中的绝对体积;同时,还针对性地开发出了用于实现上述分析步骤以及相关测量结果后处理的配套软件,GeoTri3D。为验证该绝对体积测量方法的可行性,开展了一个标准钢柱试验、一个饱和砂土和三个非饱和粉土试样的三轴试验。钢柱与饱和砂土的三轴试验结果表明该方法能够成功实现三轴试样在试验过程中任意时刻的绝对体积测量;此外,通过对粉土试样表面三维点云的进一步分析所得的土样应变云图能够真实再现三轴试验过程中的土样全局变形过程。Abstract: The soil volume in triaxial tests is an essential parameter to characterize stress and strain behaviors of soils. In recent years, more and more image-based methods have been developed for the triaxial tests on deformation measurement of soils. However, the measured results are only the relative volume change of specimens, not their absolute volume. In order to measure the absolute soil volume in triaxial tests, the photogrammetry principle, optical ray tracing and the least square optimization are used to measure the three-dimensional position of point clouds on the soil surface. The absolute volume of the soil specimens during triaxial tests is then obtained through triangulation, end cut and interpolation based on the obtained point clouds. Meantime, a software package, GeoTri3D, is developed to implement the above-mentioned steps and post processing of the measured results. In order to validate the proposed method, triaxial tests are conducted on a standard steel cylinder, a saturated sand specimen, and three soil specimens. The results obtained from the validation tests indicate that the proposed method can successfully and accurately capture the absolute volume of the soil specimens during triaxial tests at different time of interests. In addition, based on the analysis on the triangular meshes, the strain contour plots can be generated, which facilitates the visualization of the deforming process of soils during triaxial tests.
-
Keywords:
- GeoTri3D /
- photogrammetry /
- absolute volume /
- triaxial specimen /
- full-field deformation
-
-
表 1 试样参数
Table 1 Information of specimens
试样 围压/ kPa 含水率/% 直径/mm 高度/mm 钢柱 0 61.77 124.99 饱和砂 50 71.18 118.43 粉土A 5 9.46 61.82 124.95 粉土B 20 9.58 61.82 125.05 粉土C 60 9.72 61.79 124.98 表 2 相机校核结果
Table 2 Calibrated results of camera
参数 理想化前 理想化后 f/mm 55.7901 55.7901 M/(pixel) 5568 5568 N/(pixel) 3712 3712 Fx /mm 23.9809 24.5611 Fy /mm 16.0000 16.3726 Px /mm 11.8583 12.2806 Py /mm 7.9973 8.1863 K1/(10-5) 6.410 0 K2/(10-8) 0 0 P1/(10-6) 2.167 0 P2/(10-6) -2.283 0 表 3 钢柱体积
Table 3 Volumes of steel cylinder
插值倍数 空气中体积/ cm3 压力室内体积/ cm3 0 368.793 368.753 2 376.372 376.331 4 376.983 376.941 6 377.151 377.110 8 377.220 377.179 16 377.297 377.255 表 4 饱和砂土的顶面方程参数
Table 4 Information of top end plane of saturated sand specimens
位移/mm a b c 0 -0.010 -0.010 138.43 2 -0.006 -0.016 136.63 4 -0.002 -0.018 134.66 6 0.002 -0.021 132.64 8 0.006 -0.023 130.65 10 0.012 -0.025 128.62 13 0.019 -0.029 125.62 16 0.022 -0.032 122.59 20 0.028 -0.031 118.61 -
[1] JI E, ZHU J, CHEN S, et al. Analytical solution and experimental study of membrane penetration in triaxial test[J]. Geomechanics and Engineering, 2017, 13(6): 1027-1044.
[2] BISHOP A W. The Experimental Study of Partly Saturated Soil in the Triaxial Apparatus[C]//Proc 5th Int Conf Soil Mech Found Eng, 1961, Paris.
[3] ROMERO E, FACIO J A, LLORET A, et al. A New Suction and Temperature Controlled Triaxial Apparatus[C]//Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. 1997, Hamburg.
[4] KLOTZ E, COOP M. On the identification of critical state lines for sands[J]. Geotechnical Testing Journal, 2002, 25(3): 289-302.
[5] LAUDAHN A, SOSNA K, BOHAC J. A simple method for air volume change measurement in triaxial tests[J]. Geotechnical Testing Journal, 2005, 28(3): 313-318.
[6] MACARI E, PARKER J, COSTES N. Measurement of volume changes in triaxial tests using digital imaging techniques[J]. Geotechnical Testing Journal, 1997, 20(1): 103-109. doi: 10.1520/GTJ11424J
[7] LIN H, PENUMADU D. Strain localization in combined axial-torsional testing on Kaolin clay[J]. Journal of Engineering Mechanics, 2006, 132(5): 555-564. doi: 10.1061/(ASCE)0733-9399(2006)132:5(555)
[8] GACHET P, GEISER F, LALOUI L, et al. Automated digital image processing for volume change measurement in triaxial cells[J]. Geotechnical Testing Journal, 2007, 30(2): 98-103.
[9] UCHAIPICHAT A, KHALILI N, ZARGARBASHI S, et al. A temperature controlled triaxial apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 2011, 34(5): 424-432.
[10] 邵龙潭, 郭晓霞, 刘港, 等. 数字图像测量技术在土工三轴试验中的应用[J]. 岩土力学, 2015, 36(增刊1): 669-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1117.htm SHAO Long-tan, GUO Xiao-xia, LIU Gang, et al. Application of digital image processing technique to measuring specimen deformation in triaxial test[J]. Rock and Soil Mechanics, 2015, 36(S1): 669-684. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1117.htm
[11] 邵龙潭, 刘潇, 郭晓霞, 等. 土工三轴试验试样全表面变形测量的实现[J]. 岩土工程学报, 2012, 34(3): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203008.htm SHAO Long-tan, LIU Xiao, GUO Xiao-xia, et al. Whole surface deformation measurement of triaxial soil specimen based on digital image processing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 409-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203008.htm
[12] BHANDARI A, POWRIE W, HARKNESS R. A digital image-based deformation measurement system for triaxial tests[J]. Geotechnical Testing Journal, 2012, 35(2): 209-226.
[13] WANG P P, GUO X X, SANG Y, et al. Measurement of local and volumetric deformation in geotechnical triaxial testing using 3D-digital image correlation and a subpixel edge detection algorithm[J]. Acta Geotechnica, 2020, 15(10): 2891-2904.
[14] SALAZAR S E, COFFMAN R A. Consideration of internal board camera optics for triaxial testing applications[J]. Geotechnical Testing Journal, 2015, 38(1): 20140163.
[15] SALAZAR S E, BARNES A, COFFMAN R A. Development of an internal camera-based volume determination system for triaxial testing[J]. Geotechnical Testing Journal, 2015, 38(4): 20140249.
[16] ZHANG X, LI L, CHEN G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2015, 10(1): 55-82.
[17] LI L, ZHANG X, CHEN G, et al. Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method[J]. Canadian Geotechnical Journal, 2016, 53(3): 472-489.
[18] LI L, ZHANG X. A new triaxial testing system for unsaturated soil characterization[J]. Geotechnical Testing Journal, 2015, 38(6): 20140201.
[19] LI L, ZHANG X. Factors influencing the accuracy of the photogrammetry-based deformation measurement method[J]. Acta Geotechnica, 2019, 14(2): 559-574.
[20] LI L, LU Y, CAI Y, et al. A calibration technique to improve accuracy of the photogrammetry-based deformation measurement method for triaxial testing[J]. Acta Geotechnica, 2021, 16(4): 1053-1060.
[21] FAYEK S, XIA X, LI L, et al. A photogrammetry-based approach to determine the absolute volume of soil specimen during triaxial testing[J]. Journal of the Transportation Research Board, 2020, 2674(8): 206-218.
[22] BALDI G, NOVA R. Membrane penetration effects in triaxial testing[J]. Journal of Geotechnical Engineering, 1984, 110(3): 403-420.
[23] 详细操作步骤参见文献[EB/OL]. https://v.youku.com/v_show/id_XNDk5NjkwNDAyMA==.html?spm=a2h0c.8166622.PhoneSokuUgc_1.dtitle. -
期刊类型引用(2)
1. 贾宝新,王坤,孙傲,周琳力,孙闯,苏丽娟. 含采空区层状岩体微震信号传播规律试验研究. 岩土力学. 2020(10): 3255-3265 . 百度学术
2. 王帅,张向东,贾宝新. 矿震和采空区影响下围岩动力响应模型试验. 爆炸与冲击. 2019(01): 123-130 . 百度学术
其他类型引用(3)