Anisotropic characteristics of stress and strain thresholds of Longmaxi shale
-
摘要: 层理面与围压共同作用下,应力门槛值及其对应应变的各向异性特征是影响页岩脆性力学行为的重要因素之一。以龙马溪组页岩为对象,分析其应力-应变门槛值在不同围压及不同层理面倾角影响下的变化规律。结果表明:①起裂应力
σci ,损伤应力σcd 和峰值应力σf 随围压增大均近似成线性规律增大,而闭合应力σcc 受围压影响不大。②层理面倾角对σcd ,σf 具有显著影响,而对σcc ,σci 影响不明显;低围压下应力比σcd /σf ,σci /σf ,σcc /σf 随倾角增加表现出一定的波动性,随着围压增大应力比趋于稳定。③应力门槛值对应的轴向及径向应变随围压增大表现出相同的变化规律:峰值应变增长速率最快,损伤应变次之,起裂应变最小。④应力门槛值对应的轴向及径向应变随倾角的增大表现出相同的变化规律:峰值应变随倾角由0°增大为90°,先减小后增大,闭合应变、起裂应变及损伤应变与倾角的相关性不强。Abstract: Under the combined action of bedding plane and confining pressure, the anisotropic characteristics of the stress thresholds and the corresponding strains are one of the important factors affecting the brittle mechanical behaviors of shale. Taking Longmaxi formation shale as an example, the variation laws of stress-strain thresholds under different confining pressures and different bedding plane dip angles are analyzed. The results show that: (1) The crack initiation stressσci , damage stressσcd and peak stressσf increase approximately linearly with the increase of the confining pressure, while the closure stressσcc is not affected by the confining pressure. (2) The dip angle of bedding plane has a significant effect onσcd andσf , whileσcc andσci are not affected by the dip angle. Under the low confining pressure, the stress ratiosσcd /σf ,σci /σf andσcc /σf fluctuate with the increase of the dip angle, and tend to be stable with the increase of the confining pressure. (3) The axial strains and radial strains corresponding to the stress thresholds show the same change rules with the increase of the confining pressure: the peak strain increases the fastest, followed by the damage strain, and the crack initiation strain is the smallest. (4) The axial strains and radial strains corresponding to the stress thresholds show the same change laws with the increase of the inclination angle: the peak strain decreases first and then increases with the increase of the inclination angle from 0° to 90°, and the closure strain, crack initiation strain and damage strain are not strongly related to the dip angle.-
Keywords:
- shale /
- stress threshold /
- strain /
- anisotropic characteristic /
- triaxial compression test
-
致谢: 衷心感谢四川大学能源工程安全与灾害力学教育部重点实验室何柏教授、谢凌志教授提供的页岩三轴试验数据!
-
-
[1] 侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015, 36(9): 2541-2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm HOU Zhen-kun, YANG Chun-he, GUO Yin-tong, et al. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(9): 2541-2550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm
[2] 衡帅, 杨春和, 李芷, 等. 基于能量耗散的页岩脆性特征[J]. 中南大学学报(自然科学版), 2016, 47(2): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm HENG Shuai, YANG Chun-he, LI Zhi, et al. Shale brittleness estimation based on energy dissipation[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 577-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm
[3] 班宇鑫, 傅翔, 谢强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm BAN Yu-xin, FU Xiang, XIE Qiang, et al. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307-2315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
[4] GENG Z, CHEN M, JIN Y, et al. Experimental study of brittleness anisotropy of shale in triaxial compression[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 510-518. doi: 10.1016/j.jngse.2016.10.059
[5] 汪虎, 郭印同, 王磊, 等.不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm WANG Hu, GUO Yin-tong, WANG Lei, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm
[6] HENG S, LI X Z, LIU X, et al. Experimental study on the mechanical properties of bedding planes in shale[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161. doi: 10.1016/j.jngse.2020.103161
[7] YANG S Q, YIN P F, RANJITH P G. Experimental study on mechanical behavior and brittleness characteristics of longmaxi formation shale in Changning, Sichuan basin, China[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2461-2483. doi: 10.1007/s00603-020-02057-8
[8] REN L, XIE H P, SUN X, et al. Characterization of anisotropic fracture properties of Silurian Longmaxi shale[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 665-678. doi: 10.1007/s00603-020-02288-9
[9] ZHAI H Y, CHANG X, ZHU W, et al. Study on anisotropy of Longmaxi shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021, 64(2): 260-277. doi: 10.1007/s11430-020-9691-2
[10] 衡帅, 杨春和, 曾义金, 等. 基于直剪试验的页岩强度各向异性研究[J]. 岩石力学与工程学报, 2014, 33(5): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405002.htm HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al. Anisotropy of shear strength of shale based on direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 874-883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405002.htm
[11] 侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6): 1041-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm HOU Bing, CHEN Mian, ZHANG Bao-wei, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1041-1046. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm
[12] 何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学:物理学 力学 天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm HE Bo, XIE Ling-zhi, LI Feng-xia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(11): 107-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
[13] 张萍, 杨春和, 汪虎, 等.页岩单轴压缩应力-应变特征及能量各向异性[J]. 岩土力学, 2018, 39(6): 2106-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806024.htm ZHANG Ping, YANG Chun-he, WANG Hu, et al. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression[J]. Rock and Soil Mechanics, 2018, 39(6): 2106-2114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806024.htm
[14] MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643-659.
[15] EBERHARDT E, STEAD D, STIMPSON B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2): 222-233.
[16] ZHANG X P, LV G G, LIU Q S, et al. Identifying accurate crack initiation and propagation thresholds in siliceous siltstone and limestone[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 973-980.
[17] NICKSIAR M, MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 607-617.
-
期刊类型引用(8)
1. 徐善进,卢坤林,梅一帆,贾森林. 基于构造滑动面正应力分布边坡可靠性分析方法研究. 合肥工业大学学报(自然科学版). 2025(03): 418-425+432 . 百度学术
2. 王喆恺,谭慧明,高志兵. 基于机器学习的厚覆盖土层建筑场地类别评价. 地震学报. 2024(03): 477-489 . 百度学术
3. 候建琴. 基于强度折减法和随机响应面的边坡变形稳定可靠度分析. 价值工程. 2024(28): 109-112 . 百度学术
4. 蒋志坚,黄旭东,黄小平,朱珍德. 基于抗滑桩-锚杆组合结构支护下边坡变形机制研究. 山西建筑. 2024(22): 69-73+144 . 百度学术
5. 宋健,陆朱汐,谢华威,吴凯莉. 地震作用下分层土边坡多滑面变形破坏的数值模拟研究. 地震工程学报. 2023(02): 296-305 . 百度学术
6. 舒苏荀,张东升,潘天久,钱家骏,陈训龙. 小样本条件下基于Bootstrap方法的边坡非概率可靠度分析. 土木工程与管理学报. 2023(03): 96-103 . 百度学术
7. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
8. 孙志彬,郝状,谭晓慧,杨小礼,姬建. 基于滑动面离散的边坡三维上限分析机构. 岩石力学与工程学报. 2022(09): 1923-1934 . 百度学术
其他类型引用(6)