• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

近岸液化场地高桩码头地震易损性分析

孟畅, 唐亮

孟畅, 唐亮. 近岸液化场地高桩码头地震易损性分析[J]. 岩土工程学报, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
引用本文: 孟畅, 唐亮. 近岸液化场地高桩码头地震易损性分析[J]. 岩土工程学报, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014
Citation: MENG Chang, TANG Liang. Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2274-2282. DOI: 10.11779/CJGE202112014

近岸液化场地高桩码头地震易损性分析  English Version

基金项目: 

国家重点研发计划战略性国际科技创新合作重点专项项目 2016YFE0205100

国家自然科学基金项目 h51578195

国家自然科学基金项目 51608533

黑龙江省应用技术研究与开发计划项目 GA19A501

详细信息
    作者简介:

    孟畅(1995— ),男,硕士,主要从事土动力学与岩土地震工程方面的研究工作。E-mail:hit_mc@163.com

    通讯作者:

    唐亮, E-mail:hit_tl@163.com

  • 中图分类号: TU435

Seismic fragility analysis of pile-supported wharf in nearshore liquefiable ground

  • 摘要: 地震易损性分析已成为结构工程和桥梁工程界的研究热点。然而,近岸液化场地高桩码头地震易损性研究相对较少。鉴于此,依托典型工程实例,建立了近岸液化场地全直桩高桩码头地震反应分析数值模型,针对弯曲失效和弯剪失效两种失效模式,通过模态分析和Pushover分析,识别了高桩码头损伤演化过程,提出了各损伤阶段定量化判别准则。然后,以PGA为地震动强度指标,选取14组典型地震动并分别缩小至8个不同强度等级,通过增量动力分析,给出了近岸液化场地高桩码头IM-EDP曲线。最后,基于提出的高桩码头损伤判别标准,推导了高桩码头地震易损性曲线,采用对数正态分布累积分布函数对易损性曲线进行拟合,确定了便于实际应用、简化的高桩码头地震易损性曲线。研究工作可为近岸液化场地高桩码头的抗震加固提供重要的理论基础。
    Abstract: The seismic fragility analysis has become a research hotspot in structural engineering and bridge engineering, but there are few studies in the field of pile-supported wharf in nearshore liquefiable ground. Based on the typical engineering examples, a numerical model for seismic response analysis of all-straight pile and pile-supported wharf in nearshore liquefiable ground is established. In view of bending failure and bending shear failure, through the modal analysis and pushover analysis, the damage evolution process of pile-supported wharf and the quantitative discrimination criteria for each damage stage are proposed. With PGA as the ground motion intensity index, 14 groups of typical ground motions are selected and scaled to 8 different intensity levels. With the aid of the incremental dynamic analysis, the IM-EDP curve of the pile-supported wharf in nearshore liquefiable ground is proposed. Based on the proposed criterion for determining the damage of pile-supported wharf, the seismic fragility curve of pile-supported wharf is derived. The cumulative distribution function of log-normal distribution is used to fit the seismic fragility curve, and a simplified seismic fragility curve of pile-supported wharf is proposed for practical application. This work may provide important theoretical basis for the seismic reinforcement of pile-supported wharf in nearshore liquefiable ground.
  • 在建筑工程领域中,对于水平荷载作用下桩基的受力分析,常见有极限地基反力法、弹性地基反力法、复合地基反力法、弹性理论法和p-y曲线法等[1-2]。弹性地基反力法又包括地基系数常数法、k法、c法、m法以及吴恒立[3]的双参数法。张有龄给出了地基系数为常数时的桩身响应解析解,N.B.ypdh与众多学者给出了桩身内力与变形的幂级数解,更有采用[4]纽玛克法、有限差分法与有限元法来求解桩身内力与变形。

    上述常用方法中对于多层地基情况的处理略显粗糙,如目前建筑桩基[6]与公路桥涵桩基领域[7]最常采用各层地基按其地基系数以权重进行折算,得到一个地基系数的等效值。近年来,Pise[5]对双层地基水平受荷桩进行了数值求解,赵明华等[8-10]对成层地基中桩的受力与试验做了大量工作,并尝试用无网格法分析计算,戴自航等[11]采用有限元与有限差分进行数值计算,竺明星等[12]利用矩阵传递法依次求解多层地基中的桩身各点内力,詹红志等[13]也采用类似矩阵传递方法对抗滑桩嵌固段多层岩层进行了计算。

    本文不同于先前学者从桩身形函数利用幂级数角度出发,引入张氏法的解析解函数形式,利用节点内力变形连续条件,建立全桩全节点统一矩阵线性方程,引入边界条件后一次性求解所有节点的变位与内力,并将该计算方法应用于多层地基桩基的水平响应计算。

    不同于竺明星等[12, 14]建立三参数地基系数模型并利用Laplace变换求解桩身响应的方法,本文在理论推导过程中不特别假定地基系数的分布模式,但考虑到设计人员使用上的便利性,以单层地基m值与多层地基m值分别演示计算过程。

    根据Winkler理论,假定地基是服从胡克定律的弹性体,且每层地基厚度为hj,如图1所示。

    图  1  线性方程力学模型
    Figure  1.  Linear equation mechanics model

    将桩身沿深度方向分成n段,桩单元依次编号为1,2,···,n,桩结点编号为0,1,2,···,n,结点对应各自坐标值。记桩身水平位移为y(z),桩身转角为φ(z),桩身弯矩为M(z),桩身剪力为F(z),M0,F0表示桩顶作用的弯矩与水平力,Mi,zj,Fi,zj表示第i桩单元的zj节点处的弯矩与剪力,对于第i桩单元,第i段内地基系数ki以该段内的积分中值定理为原则,即

    ki=zizi1k(z)dzzizi1 (1)

    约定弯矩以桩左侧受拉为正,剪力以使桩顺时针转动方向为正,水平位移以坐标正向为正,而截面转角以逆时针转动为正。

    对于第i段,满足如下微分方程:

    EId4yidz4+kibyi=0 (2)

    Ai=4kib4EI,则可得到第iz[zi,zi1]的挠曲线方程yi(z)解析解与挠曲线各阶导数:

    yi(z)=Ci1eAizsin(Aiz)+Ci2eAizcos(Aiz)+Ci3eAizsin(Aiz)+Ci4eAizcos(Aiz) (3)

    将以上各函数表达式整理成矩阵形式,如式(4):

    yi=[fi1(z)fi2(z)fi3(z)fi4(z)][Ci1Ci2Ci3Ci4]T ,y(1)i=[gi1(z)gi2(z)gi3(z)gi4(z)][Ci1Ci2Ci3Ci4]T ,y(2)i=[pi1(z)pi2(z)pi3(z)pi4(z)] [Ci1Ci2Ci3Ci4]T ,y(3)i=[qi1(z)qi2(z)qi3(z)qi4(z)] [Ci1Ci2Ci3Ci4]T } (4)

    令各系数矩阵表达式如下:

    [P*i,zi1]=[EIpi1,zi1EIpi2,zi1EIpi3,zi1EIpi4,zi1],[Q*i,zi1]=[EIqi1,zi1EIqi2,zi1EIqi3,zi1EIqi4,zi1],[f*i,zi1]=[fi1,zi1fi2,zi1fi3,zi1fi4,zi1],[g*i,zi1]=[gi1,zi1gi2,zi1gi3,zi1gi4,zi1]} (5)

    则桩身n段各个节点处的弯矩、剪力、挠度与转角记成:[B]=[V*][C*],其中

    [B]=[M1,0...Mn,n1M1,1...Mn,nF1,0...Fn,n1F1,1...Fn,ny1,0...yn,n1y1,1...yn,nφ1,0...φn,n1φ1,1...φn,n], (6)

    (7)
    [C*]=[[C1,j][0]...[0][0][C2,j]...[0][0][0]...[0][0][0]...[Cn,j]]j=1,2,3,4 (8)

    保证桩身每一结点处内力与位移是连续的,以此思路建立桩身全结点的线性方程组如下:

    Mi,zi=Mi+1,zi ,Fi,zi=Fi+1,zi ,yi,zi=yi+1,zi ,φi,zi=φi+1,zi } (9)

    最终记成如下矩阵形式:[ξ*][C]=[H],其中

    [C]=[[C1,j][C2,j][C3,j]...[Cn1,j] [Cn,j]]j=1,2,3,4,[H]=[M0F00...0Hn1,znHn,zn], (10)
    [ξ*]=[[P*1,z0][0][0][Q*1,z0][0][0][P*1,z1][P*2,z1][0][Q*1,z1][Q*2,z1][0][f*1,z1][f*2,z1][0][g*1,z1][g*2,z1][0][0]......[0][0][ξ*4n1,n][0][0][ξ*4n,n]] (11)

    上式矩阵运算表示了全桩全结点内力与位移值需要满足该线性方程组,引入桩顶与桩端的边界条件后,等式右侧矩阵也为常数阵,这样可通过Gauss消元等多种方法求解线性方程组,解得桩身每一段的四组参数Ci1,Ci2,Ci3,Ci4,再将系数C矩阵回代式(8)即可。

    某建筑物[2]采用桩基基础,直径d=1.5 m,埋入并支持在非岩石类土中,入土深度h=15 m,桩头在地面处自由,作用有水平荷载H0=60 kN和M0=700 kN·m,C25级混凝土的弹性模量Ec=2.8×104 MPa= 2.8×107 kN/m2,地基的反力系数的比例系数m=9400 kN/m4,土的内摩擦角φ=22°,黏聚力c=15 kN/m2,重度γ=20 kN/m3

    b=KφK0d=0.9(1.5+1)=2.25m,

    EI=0.85×2.8×107×π×1.5464=59.3×105kNm2

    分别将n取5,10,15,20进行了桩身内力与位移计算,本文法计算结果与传统m法计算的桩身弯矩绘制成曲线图,如图2所示。按规范法计算桩身最大弯矩为766.9 kN·m,将桩等分20段后桩身弯矩最大值为762.8 kN·m,相比规范法误差0.53%。从上图2看出,桩身弯矩随深度增加总体呈现先上升后下降的过程,弯矩极值出现在距离桩顶(1~3)d范围之间(d为桩身直径),弯矩零点位于距离桩顶6d位置左右。

    图  2  不同分段数桩身弯矩
    Figure  2.  Moments of pile body with different numbers of sections

    图3,4中看出3种端部约束下的弯矩、位移曲线重合度较高,仅在桩端附近处弯矩曲线出现了分叉发展的趋势。位移零点出现在距离桩顶4d位置处,相比桩身弯矩的6d变化范围缩小了33.3%。本算例所得的桩身弯矩极值、弯矩与位移零点所在的桩身位置符合目前国内外学者的研究结果,如赵明华等[15-16]曾建议桩影响范围取3~5d,冯忠居等[17]建议取(2~8)d等。

    图  3  不同桩端约束的桩身弯矩
    Figure  3.  Moments of pile body restrained by different pile ends
    图  4  不同桩端约束的桩身位移
    Figure  4.  Displacements of pile body with different pile end constraints

    某圆形[12, 18]截面灌注桩[10]桩径d=1.0 m,地面处桩顶剪力Q =150 kN,弯矩M =0,桩的弹性模量E =2.1675×10 kN/m2。桩侧有两层地基土体:第一层为流塑状回填土,层厚为2.0 m,相应的地基反力系数m为3000 kN/m4;第二层为硬塑状黏性土,桩身在该层土体中的长度为10.0 m,相应的地基反力系数为20000 kN/m4

    表1为不同计算方法的计算结果,从中可知本文线性方程解与精确解之间的桩顶位移误差为2.3%,最大弯矩误差为0.285%。

    表  1  不同计算方法结果对比
    Table  1.  Results of different calculation methods
    计算方法桩顶位移/mm最大弯矩/(kN·m)最大弯矩位置/m
    精确解[18]4.3735336.813
    规范解[6]3.0156238.953
    挠度加权换算[9]4.2093343.833
    有限差分法[11]4.2989337.603
    杆系有限元法[11]4.2520336.073
    矩阵传递法[12]4.2990337.603
    本文法4.2703335.853
    下载: 导出CSV 
    | 显示表格

    笔者在本算例基础上,改变地层情况再次进行桩身弯矩与位移计算,分别将地层视为全为上层土的单一地层与全为下层土的单一地层(简称“上层土地基”与“下层土地基”),将计算结果分别绘制成曲线图5,6用以对比分析。由图5可以看出,桩身弯矩极值出现在距离桩顶(1~5)d之间,本例中双层地基情况与“下层土地基”情况都在8d位置处达到了弯矩零点;“下层土地基”与“两层土地基”均在深度5d处为位移零点。

    图  5  不同地层情况桩身弯矩
    Figure  5.  Moments of pile body in different strata
    图  6  不同地层情况桩身位移
    Figure  6.  Pile displacements in different strata

    假设地基为弹性材料,分段建立梁挠曲线微分方程,通过结点内力与位移的连续条件一次性建立桩身全结点的线性方程组,求解得到各点内力与位移。以两个算例验证了线性方程解法在单层地基与多层地基中桩身响应计算的正确性,并对桩底不同边界条件、桩身周围不同地层进行了计算与讨论,得出如下结论:

    (1)在桩顶水平荷载的作用下,桩身弯矩最大值出现在距离桩顶(1~5)d范围内,桩顶附近土层抗力越差,最大弯矩所出现的位置将越深。

    (2)在距离桩顶(6~8)d位置附近将出现弯矩函数零点,且下降段所处区间受桩中部土层的抗力大小控制。

    (3)桩身位移最大值出现在桩顶,距桩顶5d位置处出现位移零点。桩端不同的边界条件对桩身的位移影响较小,而桩周土层的抗力大小对桩身的位移起到控制作用。

    (4)同一种情况下的桩身水平响应,其弯矩零点所出现的位置将比位移零点所出现的位置滞后(2~3)d

  • 图  1   某高桩码头工程结构断面图

    Figure  1.   Sectional view of a pile-supported wharf

    图  2   某高桩码头工程平面布置图

    Figure  2.   Layout plan of a pile-supported wharf

    图  3   数值模型

    Figure  3.   Numerical model

    图  4   数值计算得到的PHC管桩单桩力学性能

    Figure  4.   Mechanical properties of PHC piles from numerical analysis

    图  5   高桩码头基本振型图

    Figure  5.   Basic mode diagram of pile-supported wharf

    图  6   高桩码头桩身屈服弯矩分布图

    Figure  6.   Diagram of pile yield moment of pile-supported wharf

    图  7   桩身塑性区定位示意图

    Figure  7.   Location diagram of plastic zone of a pile

    图  8   弯曲失效模式下高桩码头损伤演化过程

    Figure  8.   Damage evolution of pile-supported wharf under bending failure mode

    图  9   弯剪失效模式下高桩码头损伤演化过程

    Figure  9.   Damage evolution process of pile-supported wharf under bending shear failure mode

    图  10   高桩码头侧向承载性能及损伤阶段图

    Figure  10.   Lateral loading performances and damage stages of pile-supported wharf

    图  11   高桩码头IM-EDP曲线

    Figure  11.   IM-EDP curves of pile-supported wharf

    图  12   高桩码头地震易损性曲线

    Figure  12.   Seismic fragility curves of pile-supported wharf

    图  13   高桩码头地震易损性曲线具体拟合过程

    Figure  13.   Fitting of seismic fragility curve of pile-supported wharf

    图  14   简化的高桩码头地震易损性曲线

    Figure  14.   Simplified seismic fragility curves of pile-supported wharf

    表  1   土体的计算参数

    Table  1   Model parameters of soils

    土层编号饱和密度/(kg·m-3)剪切模量/kPa体积模量/kPa黏聚力/kPa摩擦角/(°)峰值剪应变参考围压p/kPa相位转换角/(°)
    1700551500290.18029
    19506030030180.180
    20001003000370.18027
    190015075025190.180
    279028013000400.180
    2240140130015450.18027
    下载: 导出CSV

    表  2   PHC管桩材料参数[17]

    Table  2   Material parameters of PHC piles[17]

    参数类别混凝土抗压强度fc/MPa混凝土抗压强度应变εc混凝土压碎强度fcu/MPa混凝土压碎强度应变εcu钢筋屈服强度Fy/MPa钢筋初始抗拉刚度Es/MPa钢筋张拉应力Epre/MPaPHC管桩整体抗剪刚度G/MPa
    桩B/C/D-80-0.00215-50.2-0.003157020000099416282.051
    桩A/E/F-160-0.00215-100.4-0.0033140400000198832564.102
    下载: 导出CSV

    表  3   港口工程4阶段损伤概念

    Table  3   Concept of four-stage damage in port engineering

    损伤阶段
    概括描述基本完好可控损伤广泛损伤完全崩塌
    具体描述结构处于完好状态或产生轻微损伤结构在可修复条件下产生有限有限的损伤,并直至发生一定的延性响应结构产生广泛的损伤直至接近崩塌的延性响应结构崩塌并丧失承载性能
    下载: 导出CSV

    表  4   选取的地震动记录

    Table  4   Selected ground motion records

    序号名称台站年份PGA/gTp/sTm/sD5-95/s
    1Morgan hillCapitola1984年0.140.200.3115.30
    2LivermoreSan Ramon-Eastman Kodak1980年0.150.621.0014.20
    3Trinidad090 CDMG Station 14981983年0.190.320.3812.18
    4HollisterUSGS Station 10281961年0.200.480.6316.48
    5Imperial ValleyChihuahua1979年0.270.260.5824.00
    6Imperial ValleyUSGS Station 51151979年0.320.360.4411.04
    7San FernandoSanta Felita Dam (Outlet)1971年0.340.100.4623.60
    8KobeKakogawa1995年0.350.160.4813.20
    9KocaeliYarimca1999年0.350.521.2415.11
    10FriuliTolmezzo1976年0.350.260.404.90
    11Chi-ChiTCU0451999年0.360.440.4711.34
    12Loma Prieta090 CDMG Station 473811989年0.370.400.375.00
    13Northridge090 CDMG Station 242781994年0.570.520.796.80
    14Landers000 SCE Station 241992年0.780.320.7521.34
    下载: 导出CSV

    表  5   高桩码头地震易损性曲线拟合参数表

    Table  5   Fitting parameters of seismic fragility curve of pile-supported wharf

    失效模式弯曲失效弯剪失效
    γ1γ2γ1γ2
    界限10.2195-1.81130.2195-1.8113
    界限20.1706-0.75980.1706-0.7598
    界限30.1557-0.44040.1691-0.7258
    下载: 导出CSV
  • [1]

    BRADLEY B A, CUBRINOVSKI M, DHAKAL R P, et al. Probabilistic seismic performance and loss assessment of a bridge-foundation-soil system[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(5): 395-411. doi: 10.1016/j.soildyn.2009.12.012

    [2]

    GOULET C A, HASELTON C B, MITRANI-REISER J, et al. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building—from seismic hazard to collapse safety and economic losses[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1973-1997.

    [3]

    ICHII K. Fragility curves for gravity-type quay walls based on effective stress analyses[C]//13th WCEE. 2004, Vancouver.

    [4]

    CHIOU J S, CHIANG C H, YANG H H, et al. Developing fragility curves for a pile-supported wharf[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 830-840.

    [5]

    HEIDARY-TORKAMANI H, BARGI K, AMIRABADI R, et al. Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles[J]. Soil Dynamics and Earthquake Engineering, 2014, 61/62: 92-106. doi: 10.1016/j.soildyn.2014.01.024

    [6]

    SU L, WAN H P, DONG Y, et al. Seismic fragility assessment of large-scale pile-supported wharf structures considering soil-pile interaction[J]. Engineering Structures, 2019, 186: 270-281. doi: 10.1016/j.engstruct.2019.02.022

    [7]

    SU L, WAN H P, BI K M, et al. Seismic fragility analysis of pile-supported wharves with the influence of soil permeability[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 211-227. doi: 10.1016/j.soildyn.2019.04.003

    [8]

    MIRZAEEFARD H, HARIRI-ARDEBILI M A, MIRTAHERI M. Time-dependent seismic fragility analysis of corroded pile-supported wharves with updating limit states[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106551. doi: 10.1016/j.soildyn.2020.106551

    [9] 王炳煌. 高桩码头工程[M]. 北京: 人民交通出版社, 2010.

    WANG Bing-huang. Pile Wharf Engineering[M]. Beijing: China Communications Press, 2010. (in Chinese)

    [10]

    MCKENNA F. OpenSees: a framework for earthquake engineering simulation[J]. Computing in Science & Engineering, 2011, 13(4): 58-66.

    [11] 常士骠, 张苏民. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2007.

    CHANG Shi-piao, ZHANG Su-min. Geological Engineering Handbook[M]. Beijing: China Architecture and Building Press, 2007. (in Chinese)

    [12] 唐亮, 凌贤长, 徐鹏举, 等. 液化场地桩-土地震相互作用振动台试验数值模拟[J]. 土木工程学报, 2012, 45(增刊1): . https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm

    TANG Liang, LING Xian-zhang, XU Peng-ju, et al. Numerical simulation of shaking table test for seismic soil-pile interaction in liquefying ground[J]. Chinese Civil Engineering Journal, 2012, 45(S1): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1060.htm

    [13]

    HUI S Q, TANG L, ZHANG X Y, et al. An investigation of the influence of near-fault ground motion parameters on the pile's response in liquefiable soil[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(4): 729-745. doi: 10.1007/s11803-018-0472-7

    [14]

    CONG S Y, TANG L, LING X Z, et al. Numerical analysis of liquefaction-induced differential settlement of shallow foundations on an island slope[J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106453. doi: 10.1016/j.soildyn.2020.106453

    [15] 孟畅. 液化场地高桩码头地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    MENG Chang. Seismic Fragility Analysis of the Pile-supported Wharf in Liquefiable Soils[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)

    [16] 苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    SU Lei. Earthquake Simulation Response of Soil-pile System in Liquefaction-induced Lateral Spreading Ground[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)

    [17] 惠舒清. 液化场地简支桥梁体系地震反应与抗震性态分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    HUI Shu-qing. Seismic Response and Performance Analysis of Soil-pile Group-multi-span Simply Supported Bridge System in Liquefiable Ground[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)

    [18]

    YANG Z. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction[D]. NewYork: Columbia University, 2000.

    [19]

    YANG Z, LU J, ELGAMAL A. OpenSees Soil Models and Solid-fluid Fully Coupled Elements Wser Manual[Z]. San Diego: University of California, 2008.

    [20] 梁兴文, 王社良, 李晓文. 混凝土结构设计原理[M]. 北京: 科学出版社, 2003.

    LIANG Xing-wen, WANG She-liang, LI Xiao-wen. Design Theory for Concrete Structure[M]. Beijing: Science Press, 2003. (in Chinese)

    [21] 预应力混凝土用钢棒:GB/T 5223.3—2017[S]. 2017.

    Steel Bars for the Prestressing of Concrete: GB/T 5223.3— 2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)

    [22] 张楠. 考虑结构—桩—土相互作用的PHC管桩抗震性能研究[D]. 天津: 天津大学, 2014.

    ZHANG Nan. Study on Seismic Performance of Pipe Piles Considering Soil-Pile-Superstructure Interaction[D]. Tianjin: Tianjin University, 2014. (in Chinese)

    [23]

    ZACCHEI E, LYRA P H C, STUCCHI F R. Pushover analysis for flexible and semi-flexible pile-supported wharf structures accounting the dynamic magnification factors due to torsional effects[J]. Structural Concrete, 2020, 21(6): 2669-2688. doi: 10.1002/suco.202000137

    [24]

    JOHNSON G S, ARULMOLI A K, ASAVAREUNGCHAI S. Seismic Design of Piers and Wharves[M]. ASCE, 2014.

    [25] 阮起楠. 预应力混凝土管桩[M]. 中国建材工业出版社, 2000.

    RUAN Qi-nan. Prestressed Concrete Pipe Pile[M]. Beijing: China Building Material Industry Publishing House, 2000. (in Chinese)

    [26]

    BOULANGER R W. Seismic design guidelines for port structures[J]. Earthquake Spectra, 2002, 18(3): 579-580. doi: 10.1193/1.1510751

    [27]

    Design of Structures for Earthquake Resistance; General Rules, Seismic Actions, Design Rules for Buildings, Foundations and Retaining Structures: Designer's Guide To EN 1998-1 and en 1998-5 Eurocode 8[S]. 2005.

    [28] 中国地震动参数区划图:GB 18306—2015[S]. 2015.

    Seismic Ground Motion Parameters Zonation Map of China: GB 18306—2015[S]. 2015. (in Chinese)

    [29]

    CIMELLARO G P, REINHORN A M. Multidimensional performance limit state for hazard fragility functions[J]. Journal of Engineering Mechanics, 2011, 137(1): 47-60. doi: 10.1061/(ASCE)EM.1943-7889.0000201

    [30]

    LU D G, YU X H, PAN F, et al. Probabilistic seismic demand analysis considering random system properties by an improved cloud method[C]//The 14th World Conference on Earthquake Engineering, 2008, Beijing.

    [31]

    DE RISI R, GODA K, TESFAMARIAM S. Multi- dimensional damage measure for seismic reliability analysis[J]. Structural Safety, 2019, 78: 1-11. doi: 10.1016/j.strusafe.2018.12.002

    [32]

    SINGHAL A, KIREMIDJIAN A S. Bayesian updating of fragilities with application to RC frames[J]. Journal of Structural Engineering, 1998, 124(8): 922-929. doi: 10.1061/(ASCE)0733-9445(1998)124:8(922)

图(14)  /  表(5)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  45
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

/

返回文章
返回