• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩坡坡面裂隙网络智能识别与参数提取

张紫杉, 王述红, 王鹏宇, 王存根

张紫杉, 王述红, 王鹏宇, 王存根. 岩坡坡面裂隙网络智能识别与参数提取[J]. 岩土工程学报, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
引用本文: 张紫杉, 王述红, 王鹏宇, 王存根. 岩坡坡面裂隙网络智能识别与参数提取[J]. 岩土工程学报, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
Citation: ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010

岩坡坡面裂隙网络智能识别与参数提取  English Version

基金项目: 

国家自然科学基金项目 U1602232

辽宁省重点研发项目 2019JH2/10100035

详细信息
    作者简介:

    张紫杉(1990— ),男,博士研究生,主要从事岩体裂隙面智能识别方面的研究工作。E-mail:zhangzishan_neu@163.com

    通讯作者:

    王述红, E-mail:shwang@mail.neu.edu.cn

  • 中图分类号: TU45

Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes

  • 摘要: 作为高陡岩质边坡建模的重要先决条件,快速精准地进行岩坡表面裂隙网络的参数化建模近年来成为了研究的热点。研究引入深度学习技术与智能算法聚类思想,提出了一种结合无人机摄影技术的高陡边坡坡面裂隙网络智能识别与几何参数提取的方法。采用空洞卷积算法对传统U-net分割识别网络进行改进,并运用GMM-EM算法对识别出的二值图中的裂隙进行聚类,最后引入RANSAC算法实现裂隙面的几何参数自动提取并运用DICE相似系数对识别结果进行对比分析。结果表明,该方法裂隙提取的准确率高于97%,相较于传统算法有所提高。同时,将该方法应用于云南鲁奎山铁矿边坡工程,实现了高陡岩坡表面裂隙信息的快速采集,为后续高陡岩质节理边坡建模提供了必要的技术支撑。
    Abstract: As an important prerequisite for modeling the high steep rocky slope, a fast and accurate parametric modeling for fracture networks of rocky slopes has become a popular research topic in recent years. Focusing on the deep learning and intelligent algorithmic clustering method, a UAV photography-based joint detection technique is proposed to identify and extract the geometric parameters of the fracture network on high steep slope surface. A dilated convolution is adopted to improve the traditional U-net segmentation network, and a GMM-EM algorithm is employed to cluster the segmented fractures on the binary images. Finally, a RANSAC algorithm is used to perform the extraction process of geometric parameter of the fracture network. Seen from the comparative results of DICE similar index, the accuracy of segmentation recognition is more than 97%, which shows that the proposed fracture extraction technique is more efficient and accurate than other traditional algorithms. The improved technique is applied to the slope of Lukuishan open pit, implementing the in-site rapid data extraction of fracture networks on the slope surface. This technique may provide an effective technical support for the refined modeling of high and steep rocky slopes.
  • 图  1   数据标签图的制作

    Figure  1.   Diagram of data and label making

    图  2   基于空洞卷积改进的U-net网络

    Figure  2.   Dilated convolution-improved U-net network

    图  3   训练准确度参数曲线

    Figure  3.   Parametric curves of training accuracy

    图  4   改进U-net法与其他裂隙检测方法的结果对比

    Figure  4.   Comparison of results between improved U-net method with other fracture detection methods

    图  5   全局-局部空间坐标转换

    Figure  5.   Conversion of global-local spatial coordinates

    图  6   GMM-EM聚类算法与其他算法的结果对比

    Figure  6.   Comparison of clustering results of GMM-EM algorithm with other algorithms

    图  7   平面复杂裂隙网络识别流程

    Figure  7.   Identification of planar complex fracture network

    图  8   云南鲁奎山铁矿目标边坡与测量设备

    Figure  8.   Measuring region in Lukuishan open pit and equipment

    图  9   云南鲁奎山边坡裂隙面提取

    Figure  9.   Extraction of slope fracture surface in Lukuishan open-pit slope

    图  10   云南鲁奎山边坡裂隙统计直方图

    Figure  10.   Histogram of dip and scanline of Lukuishan slope

    表  1   改进U-net网络计算参数

    Table  1   Configuration of improved U-net network equipment

    项目参数项目参数
    CPUIntel i7-8500Cuda10.0
    GPUNVIDIA GeforceGTX 1080语言Python 3.6
    RAMDDR 416G系统Vmware+linux
    框架Pytorch 1.7  
    下载: 导出CSV

    表  2   各种边缘检测方法的DICE相似值对比

    Table  2   Comparison of DICE similarity index in each edge detection algorithm (%)

    岩体种类标签图本文算法传统FCNSobel检测Log检测
    混凝土10098.3295.2176.6383.18
    沥青10097.3296.3269.6477.21
    花岗岩10098.8291.2358.0168.47
    下载: 导出CSV
  • [1]

    ZHANG P, LI J H, YANG X, et al. Semi-automatic extraction of rock discontinuities from point clouds using the ISODATA clustering algorithm and deviation from mean elevation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 76-87. doi: 10.1016/j.ijrmms.2018.07.009

    [2]

    LATO M J, VÖGE M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 54: 150-158. doi: 10.1016/j.ijrmms.2012.06.003

    [3]

    GUO J T, LIU Y H, WU L X, et al. A geometry- and texture-based automatic discontinuity trace extraction method for rock mass point cloud[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104132. doi: 10.1016/j.ijrmms.2019.104132

    [4]

    ZHANG P, DU K, TANNANT D D, et al. Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass[J]. Engineering Geology, 2018, 239: 109-118. doi: 10.1016/j.enggeo.2018.03.020

    [5]

    VÖGE M, LATO M J, DIEDERICHS M S. Automated rockmass discontinuity mapping from 3-dimensional surface data[J]. Engineering Geology, 2013, 164: 155-162. doi: 10.1016/j.enggeo.2013.07.008

    [6]

    CHEN J Q, ZHU H H, LI X J. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers & Geosciences, 2016, 95: 18-31.

    [7]

    WANG S H, ZHANG Z S, WANG C G, et al. Multistep rocky slope stability analysis based on unmanned aerial vehicle photogrammetry[J]. Environmental Earth Sciences, 2019, 78: 260. doi: 10.1007/s12665-019-8145-z

    [8]

    CHEN N, KEMENY J, JIANG Q H, et al. Automatic extraction of blocks from 3D point clouds of fractured rock[J]. Computers & Geosciences, 2017, 109: 149-161.

    [9] 贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学, 2018, 39(3): 1130-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm

    JIA Shu-guang, JIN Ai-bing, ZHAO Yi-qing. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope[J]. Rock and Soil Mechanics, 2018, 39(3): 1130-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm

    [10]

    PAN D D, LI S C, XU Z H, et al. A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: development and case study[J]. Engineering Geology, 2019, 262: 105310. doi: 10.1016/j.enggeo.2019.105310

    [11] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm

    ZHANG Shun, GONG Yi-hong, WANG Jin-jun. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm

    [12] 李尧, 李术才, 刘斌, 等. 基于改进后向投影算法的地质雷达探测岩体裂隙的成像方法[J]. 岩土工程学报, 2016, 38(8): 1425-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608009.htm

    LI Yao, LI Shu-cai, LIU Bin, et al. Imaging method of ground penetrating radar for rock fracture detection based on improved back projection algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1425-1433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608009.htm

    [13]

    ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.

    [14] 薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htm

    XUE Ya-dong, LI Yi-cheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htm

    [15] 黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm

    HUANG Hong-wei, LI Qing-tong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm

    [16] 朱大庆, 曹国. 基于全卷积网络的砂石图像粒径检测[J]. 计算机与现代化, 2020(7): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202007021.htm

    ZHU Da-qing, CAO Guo. Particle size detection of sandstone images based on full convolutional network[J]. Computer and Modernization, 2020(7): 111-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202007021.htm

    [17] 薛东杰, 唐麒淳, 王傲, 等. 基于FCN的岩石混凝土裂隙几何智能识别[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3393-3403. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2014.htm

    XUE Dong-jie, TANG Qi-chun, WANG Ao, et al. FCN-based intelligent identification of crack geometry in rock or concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3393-3403. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2014.htm

    [18] 王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm

    WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm

    [19]

    RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer- Assisted Intervention-MICCAI 2015, 2015. doi: 10.1007/978-3-319-24574-4_28.

    [20]

    FABRESSE F R, CABALLERO F, MAZA I, et al. An efficient approach for undelayed range-only SLAM based on Gaussian mixtures expectation[J]. Robotics and Autonomous Systems, 2018, 104: 40-55.

    [21]

    SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2): 214-226.

    [22] 王述红, 张紫杉, 王存根, 等. 岩体结构面产状随机分布空间表征[J]. 东北大学学报(自然科学版), 2017, 38(1): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201701025.htm

    WANG Shu-hong, ZHANG Zi-shan, WANG Cun-gen, et al. Stochastic spatial characterization of structural plane occurrence in rockmass[J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 121-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201701025.htm

  • 期刊类型引用(8)

    1. 杨旭辉,柏谦,贾鹏蛟. 地铁车站小直径管幕-横梁支护参数优化分析. 沈阳工业大学学报. 2025(01): 114-123 . 百度学术
    2. 邱建,赵文,路博,孙旭. 新型管幕工法修建地铁车站地层变形特性及参数优化. 东北大学学报(自然科学版). 2024(11): 1645-1655 . 百度学术
    3. 崔光耀,宋博涵,何继华,田宇航. 超近接上跨既有隧道施工影响分区及加固措施效果. 长江科学院院报. 2023(06): 114-118+125 . 百度学术
    4. 伍凯,毕延哲,杨鑫,储修琼. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析. 路基工程. 2023(04): 130-136 . 百度学术
    5. 陈凯. 基于变形控制的密排管幕顶管施工顺序优化分析. 铁道勘察. 2023(05): 149-157 . 百度学术
    6. 王子君,赵文,程诚,柏谦. 地铁车站小直径管幕工法开挖变形规律. 东北大学学报(自然科学版). 2022(11): 1630-1637 . 百度学术
    7. 袁庆利. 大直径密排管幕的力学分析及在地铁车站中的应用. 吉林水利. 2021(06): 1-10 . 百度学术
    8. 张贺. 新型钢管幕力学变形特征及其在地铁车站中的应用. 工程建设. 2021(09): 1-6 . 百度学术

    其他类型引用(3)

图(10)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-03-07
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回