Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟

崔溦, 魏杰, 王超, 王枭华, 张社荣

崔溦, 魏杰, 王超, 王枭华, 张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟[J]. 岩土工程学报, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009
引用本文: 崔溦, 魏杰, 王超, 王枭华, 张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟[J]. 岩土工程学报, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009
CUI Wei, WEI Jie, WANG Chao, WANG Xiao-hua, ZHANG She-rong. Discrete element simulation of collapse characteristics of particle column considering gradation and shape[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009
Citation: CUI Wei, WEI Jie, WANG Chao, WANG Xiao-hua, ZHANG She-rong. Discrete element simulation of collapse characteristics of particle column considering gradation and shape[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009

考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟  English Version

基金项目: 

国家自然科学基金项目 U1765106

国家自然科学基金项目 52079092

详细信息
    作者简介:

    崔溦(1977— ),男,博士,教授,主要从事岩土工程和水工结构物静动力分析研究。E-mail:cuiwei@tju.edu.cn

  • 中图分类号: TU43

Discrete element simulation of collapse characteristics of particle column considering gradation and shape

  • 摘要: 颗粒形态和级配情况等是影响碎屑颗粒流(如滑坡、泥石流、岩崩等)运动的重要因素。基于沃洛诺伊镶嵌原理的随机生成方法创建了不同长细比不同级配的多面体颗粒,引入势粒子算法用于考虑颗粒间的接触作用,根据室内试验确定了离散元接触模型的各项参数,对考虑级配和形态的颗粒柱坍塌特性开展数值试验,研究结果表明:①颗粒柱的归一化堆积高度随颗粒的长细比和中值粒径d50的减小而减小,归一化跑出距离则随其减小而增加。②堆积过程中不同工况的相对静止角α为61.49°~64.99°,且变化规律与归一化堆积高度变化一致。③不同工况的归一化能量耗散为27.1%~35.5%,且转动动能仅占平动动能的8.20%~9.05%。④归一化动能和颗粒配位数呈现负相关的关系,归一化动能达到峰值时颗粒配位数也达到最小值。⑤崩塌过程中强力链一般分布在滑动堆积体的中下部区域,形成力链传递的“拱效应”。中值粒径d50和长细比增大会减少强力链的数量,接触力传递的路径少而集中,从而限制颗粒在堆积过程中的运动。
    Abstract: Particle shape and gradation are the important factors affecting the movement of debris particle flows (such as landslides, debris flows, rock slides, etc.). The random generation method based on the Voronoi tessellation creates polyhedral particles with different aspect ratios and gradations. The potential particle algorithm is introduced to consider the contact effect between particles. The parameters of the contact model of discrete element are determined according to the indoor tests. For the item parameters, numerical experiments are carried out on the collapse characteristics of the particle column considering the gradation and morphology. The research results show that: (1) The normalized stacking height of the particle column decreases with the decrease of the aspect ratio and the median diameter (d50) of the particles, and the normalized run-out distance increases with the decrease. (2) The relative angle of repose under different working conditions during the accumulation process is in the range of 61.49°~64.99°, and the change rule is consistent with the change of the normalized accumulation height. (3) The normalized energy dissipation range under different working conditions is between 27.1%~35.5%, and the rotational kinetic energy only accounts for 8.20%~9.05% of the translational kinetic energy. (4) The normalized kinetic energy has a negative correlation with the particle coordination number, and the particle coordination number reaches the minimum when the normalized kinetic energy reaches its peak. (5) In the process of collapse, the strong chain is generally distributed in the middle and lower areas of the sliding accumulation body, forming the "arch effect" of the transmission of the force chain. The increase in the median particle size (d50) and the slenderness ratio will reduce the number of strong chains, and the paths of contact force transmission will be small and concentrated, thereby restricting the movement of particles during the accumulation process.
  • 图  1   随机形态多面生成方法[13]

    Figure  1.   Random shape multi-faceted generation method

    图  2   势粒子算法

    Figure  2.   Algorithm of potential particles

    图  3   室内试验设备布置

    Figure  3.   Layout of indoor test equipments

    图  4   接触摩擦系数测量装置

    Figure  4.   Measuring devices for friction coefficient contact

    图  5   试验模型

    Figure  5.   Experimental model

    图  6   物理试验和数值试验对比图

    Figure  6.   Comparison between physical and numerical tests

    图  7   滑动体积占比和相对静止角

    Figure  7.   Sliding volume ratios and relative angles of repose

    图  8   颗粒粒径曲线(PSD)

    Figure  8.   Curves of particle-size distribution(PSD)

    图  9   不同长细比不同粒径的颗粒建模

    Figure  9.   Modeling of particles with different aspect ratios and particle sizes

    图  10   不同工况颗粒柱坍塌过程

    Figure  10.   Collapse process of particle column under different working conditions

    图  11   不同长细比不同级配颗粒柱最终堆积形态对比

    Figure  11.   Comparison of final packing morphologies of particle columns with different aspect ratios and gradations

    图  12   相对静止角

    Figure  12.   Relative rest angles

    图  13   不同工况的相对静止角

    Figure  13.   Angles of repose under different working conditions

    图  14   PSD3时不同长细比下能量变化图

    Figure  14.   Variation of energy of PSD3 with different aspect ratios

    图  15   末时刻不同工况归一化能量耗散图

    Figure  15.   Diagram of normalized energy dissipation under different working conditions at the end

    图  16   PSD3时不同长细比下平动动能和旋转动能随标准时间的变化

    Figure  16.   Variation of translational kinetic energy and rotational kinetic energy with standard time under different aspect ratios in PSD3

    图  17   PSD3时不同长细比颗粒柱配位数、归一化动能曲线

    Figure  17.   Curves of coordination number and normalized kinetic energy of particle column with different aspect ratios at PSD3

    图  18   不同工况末时刻配位数变化曲线

    Figure  18.   Curves of coordination number under different working conditions at the end

    图  19   不同工况强力链占比

    Figure  19.   Proportions of strong chains under different working conditions

    图  20   末时刻不同工况强力链占比

    Figure  20.   Proportions of strong chains under different working conditions at the end

    图  21   PSD3、AR=1时颗粒柱的力链网络图

    Figure  21.   Diagram of force chain network of granular column with different aspect ratios at PSD3 and AR=1

    图  22   末时刻不同工况平均接触力

    Figure  22.   Average contact forces under different conditions at the end

    表  1   离散元参数表

    Table  1   Parameters of discrete elements

    类别密度/(kg·m³)摩擦角/(°)法向刚度Kn /(108 N·m-1)切向刚度Ks /(108N·m-1)局部阻尼系数
    十二面体250030110.4
    长方体槽350035110.4
    下载: 导出CSV

    表  2   摩擦系数表

    Table  2   Friction coefficients

    类别摩擦系数
    颗粒-挡板0.24
    颗粒-底板0.25
    下载: 导出CSV

    表  3   室内试验和数值模拟结果对比

    Table  3   Comparison between indoor tests and numerical simulations

    校准参数最大跑出距离Lf/mm最终堆积高度Hf/mm相对静止角α/(°)滑动体积占比w/%
    室内试验78827447.6256.97
    数值试验77127047.2053.11
    相对误差/%2.161.460.886.7
    下载: 导出CSV

    表  4   不同级配颗粒的中值粒径

    Table  4   Median particle sizes of different graded particles

    级配PSD1PSD2PSD3
    中值粒径d50/mm27.7519.5215.49
    下载: 导出CSV
  • [1] 刘广煜, 徐文杰, 佟彬, 等. 基于块体离散元的高速远程滑坡灾害动力学研究[J]. 岩石力学与工程学报, 2019, 38(8): 1557-1566. doi: 10.13722/j.cnki.jrme.2019.0158

    LIU Guang-yu, XU Wen-jie, TONG Bin, et al. Study on dynamics of high-speed and long Run-out landslide hazards based on block discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1557-1566. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0158

    [2]

    MARKS B, ROGNON P, EINAV I. Grainsize dynamics of polydisperse granular segregation down inclined planes[J]. Journal of Fluid Mechanics, 2012, 690: 499-511. doi: 10.1017/jfm.2011.454

    [3] 张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603025.htm

    ZHANG Xue, SHENG Dai-chao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603025.htm

    [4]

    OREFICE L, KHINAST J G. Deformable and breakable DEM particle clusters for modelling compression of plastic and brittle porous materials—Model and structure properties[J]. Powder Technology, 2020, 368: 90-104. doi: 10.1016/j.powtec.2020.04.035

    [5]

    ZENIT R. Computer simulations of the collapse of a granular column[J]. Physics of Fluids, 2005, 17(3): 31703. doi: 10.1063/1.1862240

    [6]

    LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(4 Pt 1): 041301.

    [7]

    UTILI S, ZHAO T, HOULSBY G T. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power[J]. Engineering Geology, 2015, 186: 3-16. doi: 10.1016/j.enggeo.2014.08.018

    [8]

    PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced mobility of granular mixtures of fine and coarse particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 466-480.

    [9] 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3): 1197-1203. doi: 10.16285/j.rsm.2017.2065

    ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203. (in Chinese) doi: 10.16285/j.rsm.2017.2065

    [10]

    ŠMILAUER V. Yade Documentation[M]. 2nd ed. 2015. The Yade Project. doi: 10.5281/zenodo.34073 (http://yade-dem.org/doc/)

    [11]

    CUNDALL P A, STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3): 33-336.

    [12]

    LANDAUER J, KUHN M, NASATO D S, et al. Particle shape matters - Using 3D printed particles to investigate fundamental particle and packing properties[J]. Powder Technology, 2020, 361: 711-718. doi: 10.1016/j.powtec.2019.11.051

    [13]

    ELIÁŠ J. Simulation of railway ballast using crushable polyhedral particles[J]. Powder Technology, 2014, 264: 458-465. doi: 10.1016/j.powtec.2014.05.052

    [14]

    BOON C W, HOULSBY G T, UTILI S. A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method[J]. Computers and Geotechnics, 2012, 44: 73-82. doi: 10.1016/j.compgeo.2012.03.012

    [15]

    BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.

    [16]

    COETZEE C J. Review: Calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142. doi: 10.1016/j.powtec.2017.01.015

    [17]

    ZHAO S W, ZHOU X W, LIU W H. Discrete element simulations of direct shear tests with particle angularity effect[J]. Granular Matter, 2015, 17(6): 793-806. doi: 10.1007/s10035-015-0593-x

    [18]

    MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268. doi: 10.1115/1.4009973

    [19]

    LI Y J, XU Y, THORNTON C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles[J]. Powder Technology, 2005, 160(3): 219-228. doi: 10.1016/j.powtec.2005.09.002

    [20] 王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(6): 1089-1106. doi: 10.3969/j.issn.1000-6915.2012.06.002

    WANG Yu-feng, CHENG Qian-gong, ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1089-1106. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.002

    [21] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): . https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm

    BIAN Xue-cheng, LI Wei, LI Gong-yu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm

    [22] 杨舒涵, 周伟, 马刚, 等. 粒间摩擦对岩土颗粒材料三维力学行为的影响机制[J]. 岩土工程学报, 2020, 42(10): 1885-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010018.htm

    YANG Shu-han, ZHOU Wei, MA Gang, et al. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010018.htm

    [23]

    ZHAO X L, EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter, 2011, 13(6): 751-764. doi: 10.1007/s10035-011-0284-1

    [24] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674. doi: 10.3321/j.issn:1000-3290.2008.08.007

    SUN Qi-cheng, WANG Guang-qian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674. (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.08.007

    [25] 戴北冰, 杨峻, 刘锋涛, 等. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(增刊2): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm

    DAI Bei-bing, YANG Jun, LIU Feng-tao, et al. Macro-and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm

  • 期刊类型引用(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 . 百度学术
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 . 百度学术
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 . 百度学术
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 . 百度学术
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 . 百度学术
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 . 百度学术
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 . 百度学术
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 . 百度学术
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 . 百度学术
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 . 百度学术
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 . 百度学术
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 . 百度学术
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 . 百度学术
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 . 百度学术
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 . 百度学术
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 . 百度学术
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 . 百度学术
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 . 百度学术
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 . 百度学术
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 . 百度学术
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 . 百度学术
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 . 百度学术

    其他类型引用(47)

图(22)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 74
出版历程
  • 收稿日期:  2020-12-22
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回