Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

颗粒形状和压实度对炉渣颗粒土力学特性的影响

吴杨, 黄锦盛, 崔杰, 吉本正宪

吴杨, 黄锦盛, 崔杰, 吉本正宪. 颗粒形状和压实度对炉渣颗粒土力学特性的影响[J]. 岩土工程学报, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
引用本文: 吴杨, 黄锦盛, 崔杰, 吉本正宪. 颗粒形状和压实度对炉渣颗粒土力学特性的影响[J]. 岩土工程学报, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008
Citation: WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2220-2229. DOI: 10.11779/CJGE202112008

颗粒形状和压实度对炉渣颗粒土力学特性的影响  English Version

基金项目: 

国家自然科学基金项目 51908153

广东省基础与应用基础研究基金项目 2021A1515012096

广州市科技计划项目 201904010278

广州市科技计划项目 202102010380

中国工程院重点咨询项目 2019-XZ-18

详细信息
    作者简介:

    吴杨(1985— ),男,副教授,博士,主要从事颗粒材料和天然气水合物沉积物力学性质等方面的研究。E-mail:yangwu@gzhu.edu.cn

    通讯作者:

    崔杰, E-mail:jcui2009@hotmail.com

  • 中图分类号: TU43

Influences of particle shape and degree of compaction on shear response of clinker ash

  • 摘要: 炉渣颗粒土是火电厂发电过程中煤炭燃烧产生的一种颗粒废弃物,近年来经常作为边坡和路基回填材料在工程建设中使用。对6种不同产地的炉渣颗粒土进行了单颗粒破碎试验,发现炉渣颗粒土的单颗粒强度显著低于天然砂土,具有较大的破碎性。随后,开展了一系列排水三轴剪切试验,研究了颗粒形状、压实度和围压对其剪切特性的影响。三轴试验结果表明,压实度可以显著提高炉渣颗粒土的初始刚度及峰值抗剪强度。相较于自然砂土,炉渣颗粒土拥有较大的峰值摩擦角,作为回填材料可提供较大的承载力。另外,炉渣颗粒土的峰值摩擦角随着围压的增大而降低。分析结果揭示颗粒形状和单颗粒强度均是影响炉渣颗粒土抗剪强度的重要因素。在不同的围压水平,两者对峰值抗剪强度的影响程度有所不同。另外,通过图像分析法获取了不同种类炉渣颗粒土的多种形状参数,发现炉渣颗粒土的圆度和球度都显著小于大部分自然砂土,表明该类颗粒材料拥有较为复杂的颗粒形状。分析结果还表明炉渣颗粒土的临界状态摩擦角与炉渣颗粒土的各个形状参数都存在一定程度的关联性。采用了一个新的能够考虑多种颗粒形状因素影响的综合指标,建立了其与临界状态强度和临界状态线位置参数的经验关系表达式。
    Abstract: The clinker ash is a kind of granular waste produced after the combustion of coal. It has been used in slope and foundation engineering as backfill materials. The single-particle crushing tests on the clinker ash from six different origins are carried out. The results indicate that the clinker ash particles own much lower single-particle strength than the natural sands and exhibit larger crushability. A series of drained triaxial shear tests are performed on the clinker ash to examine the effects of particle shape, degree of compaction and effective confining pressure on its shear characteristics. An increase in the degree of compaction strengthens the initial stiffness and the peak shear strength of the clinker ash. Compared to the natural sands, the clinker ash possesses larger peak friction angle and provides higher bearing capacity as foundation materials. As the effective confining pressure increases, the peak friction angle of the clinker ash gradually decreases. The results suggest that both the particle shape and the single-particle strength are important factors affecting the shear strength of the clinker ash. In addition, several particle shape parameters of the clinker ash are decided using the digital image analysis method. The clinker ash has smaller roundness and sphericity indexes due to its complex particle shape. The analysis results show that the critical state friction angle is well correlated with the particle shape parameters. A general and new particle shape index is employed to correlate with the relevant parameters associated with the critical state and its position.
  • 图  1   炉渣颗粒土粒度分布曲线

    Figure  1.   Grain-size distribution curves of clinker ash

    图  2   电子显微镜下炉渣颗粒土典型颗粒图像

    Figure  2.   Electron scanning images of typical clinker ash grains

    图  3   炉渣颗粒土和天然砂土的平均单颗粒破碎强度

    Figure  3.   Mean crushing strengths of clinker ash and natural sands

    图  4   炉渣颗粒土干密度随含水率的变化规律

    Figure  4.   Variation in dry density of clinker ash with water content

    图  5   炉渣颗粒土在不同试验条件下的应力-应变关系曲线

    Figure  5.   Stress-strain curves for clinker ash under different test conditions

    图  6   不同压实度条件下炉渣颗粒土的应力-应变关系

    Figure  6.   Stress-strain curves for clinker ash under different degrees of compaction

    图  7   不同压实度条件下炉渣颗粒土的峰值摩擦角

    Figure  7.   Variation in peak friction angle of clinker ash with varying degrees of compaction

    图  8   颗粒形状参数对临界状态摩擦角的影响

    Figure  8.   Effects of particle shape parameters on critical state friction angle of different granular materials

    图  9   炉渣颗粒土平均规则性ρ与临界状态角的关系

    Figure  9.   Relationship between mean regularity of particles and critical state friction angle for clinker ash

    图  10   炉渣颗粒土的临界状态线

    Figure  10.   Critical state lines of clinker ash

    图  11   炉渣颗粒土和天然砂土的平均规则性ρ与临界状态线位置参数的关系

    Figure  11.   Relationship between mean regularity of particles and critical state line position parameters of clinker ash and other natural sands

    表  1   炉渣颗粒土物理性质

    Table  1   Physical properties of clinker ash

    试样颗粒相对质量密度Gs最大孔隙比emax 最小孔隙比emin 不均匀系数Cu 平均粒径d50/mm平均单颗粒强度σfm/MPa
    CA.A2.0721.7480.94920.30.5704.27
    CA.B2.1511.6461.01012.50.2101.99
    CA.C2.1731.6180.88313.81.3002.56
    CA.D2.1321.4880.88721.20.2201.04
    CA.E2.1511.4220.75226.70.7104.75
    CA.F2.1101.4250.76921.01.7503.12
    下载: 导出CSV

    表  2   炉渣颗粒土的颗粒形状参数

    Table  2   Particle shape parameters of clinker ash

    试样圆形度R长宽比Af 球度S凹凸度C平均规则性ρ 
    CA.a0.4020.7150.7810.9470.711
    CA.b0.3750.7080.7070.9300.680
    CA.c0.3890.6630.8100.9350.701
    CA.d0.4140.6450.8010.9490.702
    CA.e0.3880.6760.7470.9350.686
    CA.f0.3870.6520.7510.9410.682
    CA.A0.3790.6450.8140.9290.691
    CA.B0.3660.6840.8220.9160.697
    CA.C0.4080.7040.8200.9560.723
    CA.D0.3620.6250.8230.9280.684
    CA.E0.3960.6890.8210.9420.712
    CA.F0.3840.7140.8170.9450.715
    下载: 导出CSV

    表  3   三轴排水剪切试验条件

    Table  3   Experimental conditions for drained triaxial shear tests

    试样σc/kPa实际压实度Dc/%试样σc/kPa实际压实度Dc/%
    CA.A5083.588.196.9CA.D5083.687.3
    100 8897.9100 90.8100.7
    20083.487.499.120085.0 101.4
    CA.B5088.190.1103.4CA.E5084.687.7100.1
    100 92.7104.210085.086.2102.9
    20086.093.7104.9200 90.098.0
    CA.C5083.888.296.8CA.F5085.088.9100.3
    100  98.610085.092.099.3
    20083.0 101.0200  99.9
    注:目标压实度Dc为85%,90%,100%。
    下载: 导出CSV

    表  4   炉渣颗粒土临界状态摩擦角与临界状态线几何参数

    Table  4   Critical state friction angles and geometrical parameters of critical state line for clinker ash

    试样临界状态摩擦角Φcs截距Γ斜率λ 
    CA.A39.951.5410.121
    CA.B40.151.5890.117
    CA.C38.821.5960.097
    CA.D40.101.5760.132
    CA.E39.021.5980.114
    CA.F39.541.6090.102
    CA.a38.771.6190.098
    CA.b39.451.6210.108
    CA.c39.041.5450.121
    CA.d38.601.6550.114
    CA.e39.161.5910.111
    CA.f39.211.5890.127
    下载: 导出CSV
  • [1] 闫澍旺, 李嘉, 张京京, 等. 石灰炉渣轻质混合料处理地基试验研究及工程应用[J]. 岩土工程学报, 2015, 37(增刊1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1003.htm

    YAN Shu-wang, LI Jia, ZHANG Jing-jing, et al. Experimental research and engineering application of lime-slag mixed materials used in foundation treatment[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1003.htm

    [2] 刘传孝, 田鸿业, 张加旺, 等. 炉渣置换软土地基的注浆均质度影响试验研究[J]. 岩土工程学报, 2010, 32(增刊2): 517-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2127.htm

    LIU Chuan-xiao, TIAN Hong-ye, ZHANG Jia-wang, et al. Test on grouting homogeneity degree of slag to replace soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 517-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2127.htm

    [3] 章定文, 曹智国. 工业废渣加固土强度特性[J]. 岩土力学, 2013, 34(增刊1): 54-59. doi: 10.16285/j.rsm.2013.s1.004

    ZHANG Ding-wen, CAO Zhi-guo. Strength characteristics of stabilized soils using industrial by-product binders[J]. Rock and Soil Mechanics, 2013, 34(S1): 54-59. (in Chinese) doi: 10.16285/j.rsm.2013.s1.004

    [4]

    CONSOLI N C, HEINECK K S, COOP M R, et al. Coal bottom ash as a geomaterial: influence of particle morphology on the behavior of granular materials[J]. Soils and Foundations, 2007, 47(2): 361-373. doi: 10.3208/sandf.47.361

    [5]

    WAKATSUKI Y, HYODO M, YOSHIMOTO N, et al. Particle characteristics and strength, deformation characteristics of loose clinker ash[J]. Doboku Gakkai Ronbunshuu C, 2009, 65(4): 897-914. doi: 10.2208/jscejc.65.897

    [6]

    WINTER M, SUESHIMA T, YOSHIMOTO N, et al. Effect of particle characteristics on the shear strength of clinker ash[M]//Geomechanics from Micro to Macro. Macro: CRC Press, 2014: 1099-1104.

    [7]

    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)

    [8] 刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(增刊1): 190-197. doi: 10.16285/j.rsm.2011.s1.121

    LIU Qing-bing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011, 32(S1): 190-197. (in Chinese) doi: 10.16285/j.rsm.2011.s1.121

    [9]

    YANG J, LUO X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 196-213. doi: 10.1016/j.jmps.2015.08.001

    [10]

    ZHOU B, WANG J, WANG H. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68(1): 18-30. doi: 10.1680/jgeot.16.P.207

    [11]

    ZHAO S W, ZHAO J D. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(13): 2147-2169. doi: 10.1002/nag.2951

    [12]

    NIE J Y, LI D Q, CAO Z J, et al. Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation[J]. Powder Technology, 2020, 360: 209-220. doi: 10.1016/j.powtec.2019.10.007

    [13] 孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm

    [14] 张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报, 2015, 37(增刊1): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm

    ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1024.htm

    [15] 常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm

    CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm

    [16]

    MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397. doi: 10.1016/j.powtec.2016.11.046

    [17]

    HUANG Q S, ZHOU W, MA G, et al. Experimental and numerical investigation of Weibullian behavior of grain crushing strength[J]. Geoscience Frontiers, 2020, 11(2): 401-411. doi: 10.1016/j.gsf.2019.07.007

    [18] 康馨, 陈植欣, 雷航, 等. 基于3D打印研究颗粒形状对砂土宏观力学性质的影响[J]. 岩土工程学报, 2020, 42(9): 1765-1772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009030.htm

    KANG Xin, CHEN Zhi-xin, LEI Hang, et al. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009030.htm

    [19]

    ALTUHAFI F N, COOP M R, GEORGIANNOU V N. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 4016071. doi: 10.1061/(ASCE)GT.1943-5606.0001569

    [20]

    LASHKARI A, FALSAFIZADEH S R, SHOURIJEH P T, et al. Instability of loose sand in constant volume direct simple shear tests in relation to particle shape[J]. Acta Geotechnica, 2020, 15(9): 2507-2527. doi: 10.1007/s11440-019-00909-4

    [21]

    JIS A 1224. Test Method for Minimum and Maximum Densities of Gravels[S]. 2009.

    [22]

    YOSHIMURA Y, OGAWA S. A simple quantification method of grain shape of granular materials such as sand[J]. Doboku Gakkai Ronbunshu, 1993, 1993(463): 95-103. doi: 10.2208/jscej.1993.463_95

    [23]

    ZHENG J, HRYCIW R D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry[J]. Géotechnique, 2015, 65(6): 494-506. doi: 10.1680/geot.14.P.192

    [24]

    NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82. doi: 10.3208/sandf.41.69

    [25]

    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679. doi: 10.1680/geot.1998.48.5.667

    [26]

    KIM B, PREZZI M, SALGADO R. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 914-924. doi: 10.1061/(ASCE)1090-0241(2005)131:7(914)

    [27]

    BOPP P A, LADE P. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45: 15-26. doi: 10.3208/sandf.45.15

    [28]

    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029

    [29]

    YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics,2008, 35(2): 210-222. doi: 10.1016/j.compgeo.2007.04.003

    [30]

    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035

    [31]

    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47: 691-709. doi: 10.1360/04ye0199

  • 期刊类型引用(5)

    1. 雷国钦,卢勇,戴泽宇,陈青林,张小普. 细粒级尾砂沉降规律及坝体稳定性研究. 有色金属(中英文). 2025(04): 660-667 . 百度学术
    2. 李庚辉,肖启飞,侯英剑. 某选厂高浓度铁尾矿沉积特性试验. 现代矿业. 2025(04): 217-220 . 百度学术
    3. 周罕,付俊,陈永贵,余璨,李嘉淇,李艳林. 沟谷上游式尾矿库的水力分选及沉积规律研究. 矿业研究与开发. 2023(08): 147-151 . 百度学术
    4. 陈青林,戴泽宇,王晓军,李祖贵,谢锦程,廖敏敏. 不同细粒含量尾矿沉降规律与其沉积体孔隙分布特征研究. 中国安全生产科学技术. 2023(12): 79-85 . 百度学术
    5. 李全明,段志杰,于玉贞,师海,李振涛. 尾矿坝沉积结构特征与性能演化规律研究进展. 中国安全生产科学技术. 2022(02): 6-19+2 . 百度学术

    其他类型引用(4)

图(11)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-02-02
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回