• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于小主应力轨迹的上埋式涵管竖向土压力非线性描述

张常光, 吴凯, 隋建浩

张常光, 吴凯, 隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述[J]. 岩土工程学报, 2021, 43(12): 2200-2208. DOI: 10.11779/CJGE202112006
引用本文: 张常光, 吴凯, 隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述[J]. 岩土工程学报, 2021, 43(12): 2200-2208. DOI: 10.11779/CJGE202112006
ZHANG Chang-guang, WU Kai, SUI Jian-hao. Nonlinear descriptions of vertical earth pressure against positive buried pipelines based on minor principal stress trajectory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2200-2208. DOI: 10.11779/CJGE202112006
Citation: ZHANG Chang-guang, WU Kai, SUI Jian-hao. Nonlinear descriptions of vertical earth pressure against positive buried pipelines based on minor principal stress trajectory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2200-2208. DOI: 10.11779/CJGE202112006

基于小主应力轨迹的上埋式涵管竖向土压力非线性描述  English Version

基金项目: 

国家自然科学基金项目 41202191

地质灾害防治与地质环境保护国家重点实验室开放基金项目 SKLGP2020K022

长安大学中央高校基本科研业务费专项资金项目 300102280108

详细信息
    作者简介:

    张常光(1982— ),男,山东菏泽人,博士,教授,从事非饱和土与地下工程等研究。E-mail:zcg1016@163.com

  • 中图分类号: TU432

Nonlinear descriptions of vertical earth pressure against positive buried pipelines based on minor principal stress trajectory

  • 摘要: 针对上埋式涵管竖向土压力的非线性描述,考虑土拱效应和管土相对刚度的影响,建立了圆弧、抛物线和偏转角线性变化3种小主应力轨迹下上埋式涵管竖向土压力的非线性解答,继而结合等沉面高度确定给出应用步骤,并对比文献模型试验、现场实测和数值模拟验证了正确性和适用性,最后进行工程选用探讨。研究结果表明:所得解答合理呈现了上埋式涵管竖向土压力沿水平方向的非线性变化,具有广泛的理论意义和工程应用价值;3种小主应力轨迹解答的适用范围不尽相同,圆弧小主应力轨迹解答对低填方的刚性涵管和柔性涵管均有很好的适用性,偏转角线性变化小主应力轨迹解答常提供稍偏保守的土压力载荷,抛物线小主应力轨迹解答可应用于高填方柔性涵管但易出现明显的高估。
    Abstract: This study presents a nonlinear solution of vertical earth pressure against positive buried pipelines with three kinds of minor principal stress trajectories, such as the circular arc, the parabolic curve, and the rotation angle linearly changed. The proposed solution accounts for the effects of soil arching and pipe-soil relative stiffness to capture the nonlinear descriptions of vertical earth pressure against the positive buried pipelines. Application steps of the proposed solution are provided along with determining the height of an equal settlement plane. Comparative validations of the results from the model tests, field measurements, and numerical simulations reported in the literatures are then performed. Finally, engineering application suggestions are discussed. It is found from this study that the proposed nonlinear solution can reasonably describe the nonlinear distribution of vertical earth pressure against the positive buried pipelines in the horizontal direction, which is of broad theoretical significance and engineering applicability value. Three solutions have different application scopes corresponding with three trajectories of minor principal stress. The solution of the circular arc trajectory is well applicable for both the shallow-filled rigid and the flexible pipelines. The solution of the rotation angle linearly changed trajectory commonly provides slightly conservative estimations of vertical earth pressures. The solution of the parabolic trajectory can be applied to high-filled flexible pipelines, yet obvious overestimations often occur.
  • 图  1   上埋式涵管力学模型

    Figure  1.   Mechanical model for a positive buried pipeline

    图  2   小主应力轨迹

    Figure  2.   Trajectory of minor principal stress

    图  3   圆弧小主应力轨迹

    Figure  3.   Circular arc trajectory of minor principal stress

    图  4   抛物线小主应力轨迹

    Figure  4.   Parabolic trajectory of minor principal stress

    图  5   偏转角线性变化小主应力轨迹

    Figure  5.   Rotation angle linearly-changed trajectory of minor principal stress

    图  6   水平薄层单元

    Figure  6.   Horizontal thin-layer element

    图  7   3种小主应力轨迹解答与模型试验的对比

    Figure  7.   Comparison between three proposed solutions and model tests

    图  8   式(41)与模型试验的对比

    Figure  8.   Comparison between Eq. (41) and model tests

    图  9   3种小主应力轨迹解答与现场实测的对比

    Figure  9.   Comparison between three proposed solutions and field measurements

    图  10   抛物线小主应力轨迹解答与现场实测的对比

    Figure  10.   Comparison between parabolic trajectory solution and field measurements

    图  11   3种小主应力轨迹解答与数值模拟的对比

    Figure  11.   Comparison between three proposed solutions and numerical simulations

    图  12   本文解答与文献多种方法的对比

    Figure  12.   Comparison between the proposed solution and various methods in literatures

    图  13   实用的刚性涵管土压力

    Figure  13.   Practical earth pressures on rigid pipelines

  • [1] 申文明, 边学成, 唐晓武, 等. 低填方上埋式管涵土压力的模型试验和理论研究[J]. 岩土工程学报, 2010, 32(7): 1017-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201007007.htm

    SHEN Wen-ming, BIAN Xue-cheng, TANG Xiao-wu, et al. Model tests and theoretical studies on earth pressure on shallow positive buried culverts[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1017-1022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201007007.htm

    [2] 周正峰, 凌建明, 梁斌. 输油管道土压力分析[J]. 重庆交通大学学报(自然科学版), 2011, 30(4): 794-797. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104022.htm

    ZHOU Zheng-feng, LING Jian-ming, LIANG Bin. Analysis of earth pressure on oil pipe[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(4): 794-797. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104022.htm

    [3] 杨明辉, 方天云, 赵明华, 等. 高填方段波纹管涵垂直土压力试验及计算[J]. 公路交通科技, 2014, 31(4): 33-38. doi: 10.3969/j.issn.1002-0268.2014.04.006

    YANG Ming-hui, FANG Tian-yun, ZHAO Ming-hua, et al. Test and calculation of vertical earth pressure on corrugated pipe culvert under high embankment[J]. Journal of Highway and Transportation Research and Development, 2014, 31(4): 33-38. (in Chinese) doi: 10.3969/j.issn.1002-0268.2014.04.006

    [4]

    TIAN Y, LIU H, JIANG X, et al. Analysis of stress and deformation of a positive buried pipe using the improved Spangler model[J]. Soils and Foundations, 2015, 55(3): 485-492. doi: 10.1016/j.sandf.2015.04.001

    [5]

    QIN X G, NI P P, ZHOU M. Improved analytical solution of vertical pressure on top of induced trench rigid culverts[J]. Geosynthetics International, 2017, 24(6): 615-624. doi: 10.1680/jgein.17.00028

    [6] 伍鹤皋, 于金弘, 石长征, 等. 大直径回填钢管管土相互作用研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1053-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202010008.htm

    WU He-gao, YU Jin-hong, SHI Chang-zheng, et al. Pipe-soil interaction of large-diameter buried steel pipe[J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1053-1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202010008.htm

    [7]

    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(3): 302-318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)

    [8]

    PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643-653. doi: 10.1680/geot.2003.53.7.643

    [9]

    XU C J, CHEN Q Z, LUO W J, et al. Analytical solution for estimating the stress state in backfill considering patterns of stress distribution[J]. International Journal of Geomechanics, ASCE, 2019, 19(1): 04018189. doi: 10.1061/(ASCE)GM.1943-5622.0001332

    [10] 汪大海, 贺少辉, 刘夏冰, 等. 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38(6): 1284-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm

    WANG Da-hai, HE Shao-hui, LIU Xia-bing, et al. A modified method for determining the overburden pressure above shallow tunnels considering the distribution of the principal stress rotation and the partially mobilized arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1284-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm

    [11] 俞缙, 周亦涛, 蔡燕燕, 等. 基于土拱效应的刚性挡墙墙后主动土压力[J]. 岩土工程学报, 2013, 35(12): 2306-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312027.htm

    YU Jin, ZHOU Yi-tao, CAI Yan-yan, et al. Active earth pressure against rigid retaining wall considering soil-arching effects[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2306-2310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312027.htm

    [12] 徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002025.htm

    XU Ri-qing, XU Ye-bin, CHENG Kang, et al. Method to calculate active earth pressure considering soil arching effect under nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002025.htm

    [13]

    JAOUHAR E M, LI L, AUBERTIN M. An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution[J]. Geomechanics and Engineering, 2018, 15(3): 889-898.

    [14] 李永刚, 周慧珍. 涵洞变形对涵顶土压力的影响[J]. 太原理工大学学报, 2014, 45(6): 829-832. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201406029.htm

    LI Yong-gang, ZHOU Hui-zhen. Effect of culvert deformation on the top earth pressure[J]. Journal of Taiyuan University of Technology, 2014, 45(6): 829-832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201406029.htm

    [15] 刘全林, 杨敏. 上埋式管道上竖向土压力计算的探讨[J]. 岩土力学, 2001, 22(2): 214-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200102027.htm

    LIU Quan-lin, YANG Min. Study of vertical earth pressure on positive buried pipelines[J]. Rock and Soil Mechanics, 2001, 22(2): 214-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200102027.htm

图(13)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回