One-dimensional thaw thermo-consolidation model for saturated frozen soil under high temperature and its solution
-
摘要: 冻结法应用及寒区施工中常采用高温热水强制融化冻土,针对饱和冻土在高温下的一维融化过程,建立了理论模型并给出了模型的解析解答。模型包含传热及热固结两部分,前者为全区域考虑未冻水的相变热传导过程,后者为融区内土体在温度、荷载及自重作用下的热固结过程。传热部分在文献中已有温度场、融化界面的解析解答,而融区内超静孔压的解析解答由本文推导获得。在忽略土颗粒、水的热膨胀作用后,模型和解答可以退化为Morgenstern和Nixon的经典冻土一维融化固结模型。利用模型解答对冻土在高温下一维融化过程中超静孔压、沉降进行了计算分析,结果表明:热压作用在热固结强度因子ε为正时会减小超静孔压,该效果随着ε增加而增强;减小融化固结比R或增大导温固结比F均扩大热压作用的相对影响范围,但前者使热压作用在融区内趋于均匀,后者会增加整体的热压作用;增加自重时间因子Wr几乎不改变热压作用强度及相对影响范围;高温的净效果使融土产生膨胀,但其影响小于普通固结沉降,因此总体效果仍表现为沉降。Abstract: During the application of artificial ground freezing technique and construction in cold regions, high-temperature hot water is often used to melt the frozen soil manually. For the one-dimensional thawing process of saturated frozen soil under high temperature, a theoretical model describing the process is established and an analytical solution is developed for the model. The model comprises a heat transfer part and a thermo-consolidation part. The former is a heat conduction process of frozen soil with phase change of pore ice considering the unfrozen water effect, while the latter is a thermo-consolidation process of soil in the thawed region under the effects of high temperature, external load and self-weight. The temperature field and the melting interface for the heat transfer part have already been deduced in the existing literatures, which are adopted directly. For the excessive pore water pressure in the thawed region, an analytical solution is developed. By neglecting the thermal expansion of soil grains and water, the proposed model and the developed solution may degenerate to those of the classical one-dimensional thaw consolidation model for frozen soil developed by Morgenstern and Nixon. The analytical solution is then used to analyze the excessive pore water pressure and the settlement for one-dimensional thawing process of frozen soil under high temperature. The results show that the effect of thermal pressure reduces the excessive pore water pressure if the thermo-consolidation intensity factor ε is positive, and this effect increases with the increasing ε. Reducing the thaw consolidation ratio R or increasing the diffusion consolidation ratio F will expand the relative influence zone of the thermal pressure. However, the former leads to a more uniform thermal pressure effect in the thawed region, while the latter generally increases the thermal pressure effect in the thawed region. Increasing the self-weight time factor Wr barely changes the intensity and the relative influence zone of the thermal pressure. The net effect of high temperature is to expand the thawed soil, but it is weaker than the effect of normal consolidation settlement, thus the general effect is still settlement.
-
0. 引言
长期交通荷载作用下软黏土层发生过大变形,严重影响交通设施的安全运行。因此,有必要对交通荷载作用下软黏土地层中的隧道或基坑工程进行动力响应分析。阻尼比作为一个重要的动力分析参数,可以通过室内试验的方式获取。然而,以往研究中,主要采用恒定围压动三轴试验来获取黏土或砂土的阻尼比。例如,Ishibashi等[1]考虑有效固结应力的影响,建立了一个阻尼比计算模型;Lee等[2]提出了一个适用于台北黏土的阻尼比计算模型;Ling等[3]针对冻土开展了恒定围压动三轴试验,研究了阻尼比随振次的变化规律,并发现了阻尼比随振次的增大呈减小趋势。
另一方面,以往研究中通常采用轴向循环荷载来模拟交通荷载,这一简化与交通荷载引起的真实应力场不相符。实际上,交通荷载引起的真实应力场既包含循环变化的正应力,也包含循环变化的水平应力[4-5]。当前,许多学者已经开展了大量的变围压循环三轴试验来研究循环围压对土体动力特性的影响。Gu等[4]对比分析了有、无循环围压作用下土体的剪切模量变化规律。
从上述的研究成果来看,循环围压对土体动力特性的影响不能忽视。同时,以往研究大多针对正常固结土,对超固结土在变围压循环荷载作用下的动力特性研究较少,对其阻尼比的变化规律更是鲜有研究。因此,本文主要包含了两部分内容:①通过开展变围压动三轴试验,分析循环围压和超固结比对软黏土阻尼比的影响;②基于试验结果,建立一个能描述变围压循环荷载作用下超固结软黏土阻尼比变化规律的经验模型。
1. 试验土样及方案
1.1 试验土样
试验所用土样取自宁波地区,取土深度大约为28.0~30.0 m。按照《土工试验规程:GB/T 50123—2019》可获取天然土样重度为17.6 kN/m3,天然含水率、液限和塑限分别为43.9%,51.5%,23.3%。
1.2 试验方案
按照《土工试验规程:GB/T 50123—2019》制备重塑试样(直径38 mm,高76 mm),并采用真空和反压联合方式对试样进行饱和。当B值达到0.95以上时,认为达到饱和,此时施加在试样上的反压和围压分别为300,320 kPa。为得到不同超固结比的试样,首先,对饱和后的试样施加不同固结应力进行固结,当固结完成时施加在试样上的有效固结应力分别为100,200,400 kPa;随后,降低固结围压对试样进行卸载,当卸载完成时,施加在所有试样上的有效固结围压均为50 kPa。通过上述方法,最终可以得到超固结比OCR分别为2,4,8的试样。另一方面,为了得到正常固结土(OCR=1),将饱和后的试样在一定压力下进行固结,固结完成时施加在试样上的有效固结应力为50 kPa。随后,关闭排水阀门,开展动力加载试验,振动频率1 Hz,振动10000次。
本试验采用GDS变围压动三轴试验系统,该系统可独立控制循环轴向偏应力和循环围压。为模拟交通荷载,试验中循环偏应力和循环围压的加载波形均为半正弦波,且加载波形相位差为0。另一方面,采用应力路径斜率η和循环应力比CSR表征循环围压[5]和循环偏应力[6],表达式如下:
CSR=qampl/2p′o=qampl/2σ′3, (1) η=pamplqampl=(σampl1+2σampl3)/3qampl=1/3+σampl3qampl , (2) 式中,pampl,qampl,σampl3分别表征循环平均主应力幅值、循环偏应力幅值及侧向应力幅值,σ′3,p′o分别表示固结完成之后的有效固结围压、平均有效正应力。不同试样加载参数见表 1所示。
表 1 循环三轴试验方案Table 1. Programs of cyclic triaxial tests编号 OCR CSR qampl/kPa σampl3/kPa η C01 1 0.35 35 24 1.00 C02 2 0.35 35 24 1.00 C03 4 0.35 35 25 1.00 C04 8 0.35 35 24 1.00 C05 4 0.35 35 0 0.33 C06 4 0.35 35 41 1.50 Y01 8 0.35 35 0 0.33 Y02 2 0.35 35 41 1.50 Y03 8 0.35 35 41 1.50 Y04 2 0.35 35 0 0.33 2. 试验结果
2.1 循环围压的影响
为便于研究,利用第一次振次对应的阻尼比D1对不同振次对应的阻尼比DN进行归一化处理。图 1为不同应力路径斜率η条件下归一化阻尼比随累积塑性应变εp的变化曲线。图 1表明,不同应力路径斜率下的DN/D1–εp曲线趋势一致,即DN/D1随εp的增长而逐渐减小,同时在变围压应力路径(η=1.00,1.50)条件下试样阻尼比均小于恒围压应力路径(η=0.33)下对应阻尼比,例如当振动次数N=10000,应力路径斜率η为0.33,1.0,1.5时,对应的归一化阻尼比分别为0.17,0.18,0.26。
2.2 超固结比的影响
当CSR=0.35,应力路径斜率η=1.0时,不同超固结比土样在变围压动三轴试验中阻尼比随累积塑性应变的关系曲线与图 1类似。不同超固结比土样对应的归一化阻尼比均随累积塑性应变的增加逐渐减小,且衰减速率呈减小趋势。一定累积塑性应变条件下,归一化阻尼比的衰减量随超固结比的增大而增大,意味着正常固结土的归一化阻尼比较超固结土的归一化阻尼比大。例如,当试验完成时,正常固结土的归一化阻尼比为0.34,而超固结比OCR=2,4,8时对应的归一化阻尼比分别为0.27,0.19,0.18,归一化阻尼比随超固结比OCR由1增大至8时,分别减少了20.6%,44.1%,47.1%。
2.3 阻尼比模型
基于上述试验结果,本文提出了一个可以考虑阻尼比随累积塑性应变的变化规律的表达式:
DND1=11+(aεp)b, (3) 式中,参数a,b为拟合参数,受循环围压和超固结比影响,DN,D1分别为第N次和第1次循环对应的阻尼比。
利用式(3)对试验结果进行拟合,得到不同试验条件下对应的拟合参数取值。在此基础上,为进一步研究参数a,D1与应力路径斜率η、超固结比OCR的关系,假设超固结比和循环围压对上述两个参数的影响独立,则有:
a=a1(OCR)a2(η), (4) D1=D11(OCR)D12(η), (5) 式中,a1,D11表征超固结比的影响,a2,D12表征循环围压的影响。
进一步的,对相同应力路径斜率,不同超固结比试验条件下得到的拟合参数a1,D11进行分析,建立上述两个拟合参数分别和超固结比的相关关系,如图 2所示。从图 2中可以看出,参数a1,D11分别与OCR满足对数和幂函数关系:
a1=22.834lnOCR+2.162, (6) D11=0.232OCR−0.321。 (7) 然后,为了考虑循环围压的影响,需要先将超固结比的影响从式(4),(5)中去除。当应力路径斜率η=1.00,超固结比OCR=4时,通过式(6),(7)可以得到对应的a1,D11值分别为33.817和0.149,则超固结比OCR=4,应力路径斜率η=0.33,1.00,1.50时对应的拟合参数a,D1分别利用33.817和0.149进行归一化,即为a2,D12的取值。最后,即可得到归一化参数a2,D12分别随归一化应力路径斜率(η/η0,η0=1.00)的关系曲线,见图 3所示,从图中可以看出,参数a2,D12与η/η0满足线性关系:
a2=0.555η/ηη0η0+0.602, (8) D12=−0.177η/ηη0η0+1.131。 (9) 由于参数b随超固结比OCR的变化没有一致性规律,且其变化量较小。因此,为方便模型的使用,式(3)中参数b取一定值,即ˉb=0.677。
最后将式(6),(7),(8),(9)和ˉb代入式(3)中即可得到不同超固结土在变围压循环荷载作用下阻尼比与累积塑性应变的关系表达式:
DN=0.232OCR−0.321⋅(−0.177η/η0+1.131)1+[(22.834lnOCR+2.162)⋅(0.555η/η0+0.602)⋅ϵp]0.677。 (10) 将不同试验条件对应的OCR和η代入式(10)中,即可得到不同试验条件下阻尼比的计算值随累积塑性应变的变化曲线,见图 4所示。从图 4可以看出,由式(10)得到的阻尼比计算值与试验值较为接近,表明式(10)能够较好地描述阻尼比随累积塑性应变的变化规律。
3. 结论
(1)不论试验条件如何,归一化阻尼比均随累积塑性应变的增大而减小。循环围压和超固结比对归一化阻尼比的变化规律有一定影响,且归一化阻尼比随循环围压和超固结比的增大而减小。
(2)不同超固结土在变围压循环荷载作用下,其归一化阻尼比和累积塑性应变满足关系表达式DN/D1=1/[1+(aεp)b]。
(3)超固结比和循环围压对阻尼比的影响由拟合参数a,D1体现,其中表征超固结比影响的参数a1,D11与超固结比OCR分别满足对数和幂函数关系,而表征应力路径斜率影响的参数a2,D12则随应力路径斜率η的变化分别呈线性增长和线性减小关系。
-
-
[1] 李国玉, 马巍, 王学力, 等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学, 2015, 36(10): 2963-2973. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510034.htm LI Guo-yu, MA Wei, WANG Xue-li, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2963-2973. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510034.htm
[2] 牛富俊, 程国栋, 赖远明, 等. 青藏高原多年冻土区热融滑塌型斜坡失稳研究[J]. 岩土工程学报, 2004, 26(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403024.htm NIU Fu-jun, CHENG Guo-dong, LAI Yuan-ming, et al. Instability study on thaw slumping in permafrost regions of Qinghai-Tibet Plateau[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 402-406. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403024.htm
[3] 陈瑞杰, 程国栋, 李述训, 等. 人工地层冻结应用研究进展和展望[J]. 岩土工程学报, 2000, 22(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001006.htm CHEN Rui-jie, CHENG Guo-dong, LI Shu-xun, et al. Development and prospect of research on application of artificial ground freezing[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001006.htm
[4] 胡向东, 李忻轶, 吴元昊, 等. 拱北隧道管幕冻结法管间冻结封水效果实测研究[J]. 岩土工程学报, 2019, 41(12): 2207-2214. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912008.htm HU Xiang-dong, LI Xin-yi, WU Yuan-hao, et al. Effect of water-proofing in Gongbei Tunnel by freeze-sealing pipe roof method with field temperature data[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2207-2214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912008.htm
[5] 周洁, 李泽垚, 万鹏, 等. 组合地层渗流对人工地层冻结法及周围工程环境效应的影响[J]. 岩土工程学报, 2021, 43(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm ZHOU Jie, LI Ze-yao, WAN Peng, et al. Effects of seepage in clay-sand composite strata on artificial ground freezing and surrounding engineering environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 471-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103013.htm
[6] 张升, 颜瀚, 滕继东, 等. 一个冻土的渗透系数模型及其验证[J]. 岩土工程学报, 2020, 42(11): 2146-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011026.htm ZHANG Sheng, YAN Han, TENG Ji-dong, et al. New model for hydraulic conductivity of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2146-2152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202011026.htm
[7] 程桦, 陈汉青, 曹广勇, 等. 冻土毛细-薄膜水分迁移机制及其试验验证[J]. 岩土工程学报, 2020, 42(10): 1790-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010004.htm CHENG Hua, CHEN Han-qing, CAO Guang-yong, et al. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010004.htm
[8] 周扬, 周国庆, 周金生, 等. 饱和土冻结透镜体生长过程水热耦合分析[J]. 岩土工程学报, 2010, 32(4): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm ZHOU Yang, ZHOU Guo-qing, ZHOU Jin-sheng, et al. Ice lens growth process involving coupled moisture and heat transfer during freezing of saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 578-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004018.htm
[9] 周扬, 周国庆, 王义江. 饱和土水热耦合分离冰冻胀模型研究[J]. 岩土工程学报, 2010, 32(11): 1746-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011021.htm ZHOU Yang, ZHOU Guo-qing, WANG Yi-jiang. Separate ice frost heave model for coupled moisture and heat transfer in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1746-1751. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011021.htm
[10] ZHOU Y, ZHOU G Q. Intermittent freezing mode to reduce frost heave in freezing soils—experiments and mechanism analysis[J]. Canadian Geotechnical Journal, 2012, 49(6): 686-693. doi: 10.1139/t2012-028
[11] 梁波, 张贵生, 刘德仁. 冻融循环条件下土的融沉性质试验研究[J]. 岩土工程学报, 2006, 28(10): 1213-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200610006.htm LIANG Bo, ZHANG Gui-sheng, LIU De-ren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200610006.htm
[12] 王天亮, 卜建清, 王扬, 等. 多次冻融条件下土体的融沉性质研究[J]. 岩土工程学报, 2014, 36(4): 625-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404006.htm WANG Tian-liang, BU Jian-qing, WANG Yang, et al. Thaw subsidence properties of soils under repeated freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 625-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404006.htm
[13] 王效宾, 杨平, 张婷. 人工冻土融沉特性试验研究[J]. 南京林业大学学报(自然科学版), 2008, 32(4): 108-112. WANG Xiao-bin, YANG Ping, ZHANG Ting. Study on thaw settlement behaviour of artificial freezing soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(4): 108-112. (in Chinese)
[14] 赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106024.htm ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106024.htm
[15] MORGENSTERN N R, NIXON J F. One-dimensional consolidation of thawing soils[J]. Canadian Geotechnical Journal, 1971, 8(4): 558-565.
[16] MORGENSTERN N R, SMITH L B. Thaw-consolidation tests on remoulded clays[J]. Canadian Geotechnical Journal, 1973, 10(1): 25-40.
[17] NIXON J F, MORGENSTERN N R. Thaw-consolidation tests on undisturbed fine-grained permafrost[J]. Canadian Geotechnical Journal, 1974, 11(1): 202-214.
[18] ZHOU Y, ZHANG L Y, XU C, et al. Analytical solution for classical one-dimensional thaw consolidation model considering unfrozen water effect and time-varying load[J]. Computers and Geotechnics, 2020, 122: 103513.
[19] FORIERO A, LADANYI B. FEM assessment of large-strain thaw consolidation[J]. Journal of Geotechnical Engineering, 1995, 121(2): 126-138.
[20] GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers[J]. Canadian Geotechnical Journal, 1981, 18(2): 280-293.
[21] YAO X L, QI J L, WU W. Three dimensional analysis of large strain thaw consolidation in permafrost[J]. Acta Geotechnica, 2012, 7(3): 193-202.
[22] YAO X L, QI J L, LIU M X, et al. Pore water pressure distribution and dissipation during thaw consolidation[J]. Transport in porous media, 2017, 116(2): 435-451.
[23] QI J L, YAO X L, YU F, et al. Study on thaw consolidation of permafrost under roadway embankment[J]. Cold Regions Science and Technology, 2012, 81: 48-54.
[24] WANG S H, QI J L, YU F, et al. A novel method for estimating settlement of embankments in cold regions[J]. Cold Regions Science and Technology, 2013, 88: 50-58.
[25] WANG L M, WANG W L, YU F. Thaw consolidation behaviours of embankments in permafrost regions with periodical temperature boundaries[J]. Cold Regions Science and Technology, 2015, 109: 70-77.
[26] DUMAIS S, KONRAD J M. One-dimensional large-strain thaw consolidation using nonlinear effective stress-void ratio-hydraulic conductivity relationships[J]. Canadian Geotechnical Journal, 2018, 55(3): 414-426.
[27] 王涛, 岳丰田, 姜耀东, 等. 井筒冻结壁强制解冻技术的研究与实践[J]. 煤炭学报, 2010, 35(6): 918-922. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006012.htm WANG Tao, YUE Feng-tian, JIANG Yao-dong, et al. Research and practice on forced thaw technology applied to frozen wall of mine shaft[J]. Journal of China Coal Society, 2010, 35(6): 918-922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006012.htm
[28] 袁云辉, 杨平, 王海波. 人工水平冻结冻土帷幕强制解冻温度场数值分析[J]. 南京林业大学学报(自然科学版), 2011, 35(4): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201104027.htm YUAN Yun-hui, YANG Ping, WANG Hai-bo. Thermal field numerical analysis of artificial thawing of horizontal freezing soil wall[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2011, 35(4): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201104027.htm
[29] ZHOU Y, RAJAPAKSE R K N D, GRAHAM J. A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration[J]. International Journal of Solids and Structures, 1998, 35(34/35): 4659-4683.
[30] 白冰. 岩土颗粒介质非等温一维热固结特性研究[J]. 工程力学, 2005, 22(5): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200505033.htm BAI Bing. One-dimensional thermal consolidation characteristics of geotechnical media under non-isothermal condition[J]. Engineering Mechanics, 2005, 22(5): 186-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200505033.htm
[31] 吴瑞潜, 谢康和, 程永锋. 变荷载下饱和土一维热固结解析理论[J]. 浙江大学学报(工学版), 2009, 43(8): 1532-1537. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200908034.htm WU Rui-qian, XIE Kang-he, CHENG Yong-feng. Analytical theory for one-dimensional thermal consolidation of saturated soil under time-dependent loading[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(8): 1532-1537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200908034.htm
[32] 钮家军, 凌道盛, 王秀凯, 等. 饱和单层土体一维热固结精确解[J]. 岩土工程学报, 2019, 41(9): 1715-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909018.htm NIU Jia-jun, LING Dao-sheng, WANG Xiu-kai, et al. Exact solutions for one-dimensional thermal consolidation of single-layer saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1715-1723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909018.htm
[33] ZHOU Y, ZHOU J, SHI X Y, et al. Practical models describing hysteresis behavior of unfrozen water in frozen soil based on similarity analysis[J]. Cold Regions Science and Technology, 2019, 157: 215-223.
[34] ZHOU Y, WANG Y J, BU W K. Exact solution for a Stefan problem with latent heat a power function of position[J]. International Journal of Heat and Mass Transfer, 2014, 69: 451-454.
[35] ZHOU Y, HU X X, LI T, et al. Similarity type of general solution for one-dimensional heat conduction in the cylindrical coordinate[J]. International Journal of Heat and Mass Transfer, 2018, 119: 542-550.
[36] 涂新斌, 戴福初. 土体一维传热方程解析解及热扩散系数测定[J]. 岩土工程学报, 2008, 30(5): 652-657. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200805007.htm TU Xin-bin, DAI Fu-chu. Analytical solution for one-dimensional heat transfer equation of soil and evaluation for thermal diffusivity[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 652-657. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200805007.htm
-
期刊类型引用(5)
1. 郑刚,张文彬,赵继辉,周海祚. 桩-承台不同连接方式下的桩基-结构动力响应离心机振动台试验研究. 建筑结构学报. 2025(01): 204-211+222 . 百度学术
2. 王永志,汤兆光,张雪东,孙锐,张宇亭. 超重力离心模型试验中孔隙水压测试影响因素与标定方法. 岩石力学与工程学报. 2022(S2): 3433-3443 . 百度学术
3. 汤兆光,王永志,段雪锋,孙锐,王体强. 分体高频响应微型孔隙水压力传感器研制与性能评价. 岩土工程学报. 2021(07): 1210-1219+1375-1376 . 本站查看
4. 孔维伟,贾妍,卢娜. 基于PVDF压力传感器的三维流速仪的流速模拟分析. 新型工业化. 2021(06): 205+230 . 百度学术
5. 汤兆光,王永志,孙锐,段雪锋,王体强,王浩然. 动力离心试验微型孔压传感器研制与性能验证. 岩土工程学报. 2020(S2): 129-134 . 本站查看
其他类型引用(6)