Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展

陈永贵, 蔡叶青, 叶为民, 崔玉军, 陈宝

陈永贵, 蔡叶青, 叶为民, 崔玉军, 陈宝. 处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展[J]. 岩土工程学报, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
引用本文: 陈永贵, 蔡叶青, 叶为民, 崔玉军, 陈宝. 处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展[J]. 岩土工程学报, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001
Citation: CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2149-2158. DOI: 10.11779/CJGE202112001

处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展  English Version

基金项目: 

国家自然科学基金项目 41977232

国家自然科学基金项目 41772279

国家自然科学基金项目 42030714

详细信息
    作者简介:

    陈永贵(1976— ),男,安徽宿松人,教授,博士生导师,主要从事环境地质和非饱和土力学方面的研究。E-mail:cyg@tongji.edu.cn

  • 中图分类号: TU41

Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository

  • 摘要: 在阐述高放射性废物深地质处置库内膨润土胶体吸附迁移特性的基础上,总结了胶体与核素的共迁移试验、作用机理和模拟等方面研究成果。结果表明,膨润土胶体的吸附、迁移性受胶体浓度、地下水离子强度和pH影响显著,已有成果难以评价膨润土胶体对核素的吸附能力以及胶体的迁移能力。实验室动态柱试验和原位偶极子流场试验都关注到可移动胶体对核素迁移的促进作用以及过滤胶体对核素迁移的阻滞作用,但缺乏原位远距离胶体和核素共迁移试验成果。膨润土胶体和核素共迁移效果受胶体的吸附-解吸和胶体过滤作用控制,鲜少考虑介质的阻塞作用。双重渗透率模型和双重孔隙介质模型能够模拟特定条件下膨润土胶体和核素的共迁移穿透曲线,但考虑的裂隙系统简单,未考虑核素的竞争吸附效应。最后,提出了试验和理论方面的研究建议。
    Abstract: On the basis of elaborating the adsorption and migration properties of bentonite colloids in deep geological repository of high-level radioactive waste, a comprehensive review and summary of the co-migration experiments, interaction mechanisms and simulations of bentonite colloids and nuclides are summarized. The results show that the adsorption and mobility of the bentonite colloids are significantly affected by the concentration of the colloids, the ionic strength of groundwater and pH. The existing studies are difficult to evaluate the adsorption capacity of the bentonite colloids for nuclides and the migration capacity of the colloids themselves. The laboratory dynamic column tests and the in-situ dipole flow field tests both focus on the promotion of the mobile colloids and the blocking effects of filter colloids on the migration of the nuclide. There is a lack of examples of the co-migration of long-distance colloids and nuclides. The co-migration effects of the bentonite colloids and nuclides are controlled by the adsorption-desorption effect of the colloids and the filtering effect of the colloids, rarely considering the blocking effect of the medium. The dual permeability model and double-porosity model can simulate the co-migration breakthrough curves of the bentonite colloids and nuclides under specific conditions, but the fracture system considered is simple, and the competitive adsorption effect of the nuclides is not considered. For this reason, some suggestions for further experimental and theoretical researches are put forward.
  • 中国是世界第三冻土大国,随着“一带一路”倡议的实施,以川藏铁路、青藏高速公路、银西高铁等为代表的国家级寒区工程项目全面上马[1],爆破作为一种重要的冻土开挖方法得到了广泛的应用[2],此外,中国西部寒区地震活动极为频繁,在项目建设和后期服役过程中,必须考虑地震荷载作用下工程的稳定性[3]。因此,开展冲击荷载作用下冻土的力学响应和破坏机理研究,对提高冻土开挖破碎效率,确保工程稳定具有重要的理论和实践意义。

    作为一种典型的四相复合材料,冻土具有明显的低温脆性特征,其静态抗压和抗拉强度比在3.1~12.1内[4]。彭万巍[5]指出,冻土的抗拉强度是冻土工程设计的重要参数,且具有明显的温度和加载率敏感性[6],然而,相较于抗压强度,冻土抗拉强度和破坏特性的研究相对较少。张勇敢等[7]发现冻结膨胀土的抗拉强度随加载速率的增加和温度的降低而增大。

    理论分析表明,应力波作用下冻土会产生以拉伸裂纹为主的破坏模式,在冻土爆破损伤范围计算和地震荷载作用下寒区路基稳定性分析等领域,冻土的动态拉伸强度是不可忽略的重要力学参数。高应变率范围内,通常采用分离式Hopkinson压杆(split Hopkinson pressure bar,SHPB)研究冻土的动态力学响应特征,目前主要侧重于冻土的动态压缩特性和本构关系[8-9],但对冻土动态劈裂拉伸性能和破坏机理的研究较为缺乏。目前,关于煤、岩石和水泥基等工程材料劈裂拉伸特性的研究已取得丰硕成果。赵毅鑫等[10]开展了煤试样的巴西圆盘静态劈裂和冲击加载试验,发现煤的动态拉伸强度约为静态的2.14~3.26倍。杨仁树等[11]对比分析了3种岩石的动态拉伸响应特征,并借助超高速数字图像系统研究了岩石试样的表面应变场和拉伸破坏过程,发现不同类型岩石的动态拉伸强度均表现出明显的加载率效应。

    基于此,本文以施工中常见的冻结黏土和冻结砂土为研究对象,利用铝质SHPB系统开展了不同负温和冲击气压下冻土的劈裂拉伸试验,系统地研究了温度和加载率对两种冻土动态拉伸强度、能量耗散和破坏模式的影响,探讨了冻土巴西圆盘的劈裂破坏机理及动态拉伸强度的影响因素;借助高速摄像系统,研究了冲击荷载作用下冻土试样裂纹起裂、扩展和破坏过程,研究结果可为寒区冻土工程高效破碎和稳定性分析提供理论和试验依据。

    本次试验用原状黏土和砂土分别取自安徽淮南某地基基础和煤矿风井,原状黏土和砂土的含水率分别为20.1%,15.2%。采用重塑土进行试验,重塑后黏土的塑限和液限分别为18.6%,45.2%,塑性指数为26.6,干密度为1.72 g/cm3,颗粒级配见表 1;砂土的干密度为1.65 g/cm3,颗粒级配见表 2。冻土试样的制备过程如下:首先,将原状土置于105℃的烘干箱内烘24 h以上;其次,将干土碾碎并过2 mm的筛网,按照原状含水率将所需的蒸馏水分多次加入干土中并拌和均匀,静置24 h;再次,取一定质量的土样放入内径37 mm、高度18.5 mm的不锈钢模具中并一次性击实,经抹平和脱模后,制备出待冻结的巴西圆盘试样;然后,将试样放入-30℃的低温箱中冻结24 h,再放入试验所需温度(-10℃、-15℃、-20℃和-25℃)的低温箱中冻结24 h以上;最后,开展动态劈裂拉伸试验。

    表  1  黏土颗粒级配
    Table  1.  Grain-size distribution of clay
    粒径/mm 0~0.075 0.075~0.45 0.45~1 1~1.6 1.6~2
    百分比/% 51.33 19.72 12.02 11.48 5.45
    下载: 导出CSV 
    | 显示表格
    表  2  砂土颗粒级配
    Table  2.  Grain-size distribution of sand
    粒径/mm 0~0.075 0.075~0.45 0.45~1 1~1.6 1.6~2
    百分比/% 0.8 32.29 49.54 13.23 4.14
    下载: 导出CSV 
    | 显示表格

    采用直径37 mm的铝质SHPB系统开展冻土的动态巴西圆盘试验,由发射控制系统、撞击杆、波形整形器、入射杆、透射杆、吸收杆、数据采集系统和高速摄像系统组成。撞击杆、入射杆、透射杆和吸收杆的长度分别为600,2000,2000,1000 mm;铝杆材料参数:密度为2700 kg/m3,弹性模量为70 GPa,纵波波速为5090 m/s;波形整形器为直径12 mm、高1 mm的紫铜片。采用高速摄像系统观测冻土试样裂纹起裂、扩展和破坏的全过程,摄像帧频率设置为10000 fps,即每100 μs拍摄一张图片。采用外部电信号触发高速摄像系统的方法,当入射杆上的电阻应变片采集入射波信号后,应变片将入射波信号转换为电压信号,再经过超动态应变仪将信号传递到高速摄像机的外部接口,即可触发高速摄像机开始工作,从而实现记录试件破坏全过程的目的。

    在SHPB劈裂拉伸试验中,当裂纹从巴西圆盘中心处萌生并沿加载方向扩展,即试样产生平行于冲击方向的主裂纹,且沿加载轴方向劈裂为两部分时,试验结果是有效的[12]。因此,开展了不同冲击气压下两种冻土的动态巴西圆盘预试验,结果表明,当冲击气压过大时,冻土试样会出现压缩破坏模式,与劈裂拉伸破坏特征不符,最终确定冻结黏土和冻结砂土的最大冲击气压分别为0.15,0.13 MPa。

    基于一维应力波理论和应力均匀性假设,试样两端荷载P和中心处拉伸应力σt分别为[13]

    P(t)=AEεt
    (1)
    σt(t)=2P(t)π DsB
    (2)

    式中:AE分别为杆的横截面面积和弹性模量;ε为应变;DsB分别为试样的直径和厚度。

    加载率可通过拉伸应力历史确定,图 1为0.13 MPa冲击气压下-15℃冻结砂土的拉伸应力时程曲线,将峰值应力前近似线性变化曲线段的斜率定义为加载率。

    图  1  动态劈裂拉伸试验中加载率的确定方法
    Figure  1.  Determination method of loading rate in dynamic splitting tensile tests

    SHPB试验中应力波传播时携带的能量为[14]

    Wi(t)=AECbε2i(t)dt(i=I,R,T)
    (3)

    式中:WIWRWT分别为入射波、反射波和透射波携带的能量;Cb为杆的弹性波波速;εI(t)εR(t)εT(t)分别为入射波、反射波和透射波的应变。

    假设杆件与试样间接触面的能量损耗可忽略不计,试样在破坏过程中所吸收的能量U

    U=WIWRWT
    (4)

    图 2为不同负温下,冻结黏土和冻结砂土的动态拉伸应力-时间曲线。相同负温下,两种类型冻土的动态拉伸峰值应力均随冲击气压的增加而增大;动态冲击加载过程中,冻结黏土试样达到峰值应力所需的时间在189~242 μs内,而冻结砂土为92~139 μs。研究表明,巴西圆盘试样达到峰值应力时其中心位置会出现拉伸裂纹[15],因此,本次试验条件下,冻结砂土试样发生拉伸破坏所需的时间少于冻结黏土,两种冻土试样的拉伸破坏过程将在后续部分进一步分析。

    图  2  冻土动态拉伸应力-时间曲线
    Figure  2.  Dynamic tensile stress-time curves of frozen soils

    不同温度下冻土加载率和冲击气压的关系见图 3。可以看出,随着冲击气压的增加,冻土的加载率呈线性增大;冲击气压相同时,随着温度的降低,冻土的脆性增强,加载率增大。例如,0.12 MPa冲击气压时,冻结黏土和冻结砂土试样在-10℃时的加载率分别为19.5,25.5 GPa/s,而-15℃,-20℃和-25℃时冻结黏土的加载率分别为27.2,32.4,44.3 GPa/s,增幅依次为139%,166%,227%;-15℃,-20℃和-25℃时冻结砂土的加载率分别为31.2,34.4,45.5 GPa/s,增幅依次为122%,134%,178%。

    图  3  冻土加载率和冲击气压的关系
    Figure  3.  Relationship between loading rate of frozen soils and impact pressure

    冻土动态拉伸强度和加载率之间的关系见图 4,二者呈现较好的正相关性。不同负温下,冻结黏土和冻结砂土的动态拉伸强度均随加载率的增加而增大,表现出明显的加载率增强效应,且两种冻土的强度增幅受到负温的影响。本次试验条件下,当加载率从20.4 GPa/s增加到30.5 GPa/s时,-10℃、-15℃和-20℃时对于冻结砂土的动态拉伸强度分别提高了18%,10%,7%;当加载率从34.8 GPa/s增加到48.7 GPa/s时,-20℃的冻结黏土和冻结砂土的动态拉伸强度分别提高了31%,19%。

    图  4  冻土动态拉伸强度和加载率的关系
    Figure  4.  Relationship between dynamic tensile strength and loading rate of frozen soils

    图 4可知,相同加载率范围内,冻土的动态拉伸强度随温度的降低而提高。在此,尝试从冻土四相组成的角度出发,分析冻土巴西圆盘劈裂破坏机理及动态拉伸强度的影响因素,见图 5。Zhou等[16]研究了冻土抗拉强度的产生机制,认为冻土的抗拉强度主要受有效含冰量、冰颗粒抗拉强度和土颗粒与冰水混合物之间胶结力等因素的影响,并分析了不同温度范围内各因素对冻土抗拉强度的贡献占比。冲击荷载作用下,冻土巴西圆盘试样共存在3种颗粒破坏模式:土颗粒与冰颗粒间的胶结面破坏、土颗粒间的胶结面破坏和冰颗粒破坏。其中,土颗粒之间的胶结力对冻土抗拉强度的贡献很小,可忽略不计。

    图  5  冻土巴西圆盘劈裂破坏机理及动态拉伸强度的影响因素
    Figure  5.  Splitting failure mechanism of Brazilian disc and influencing factors of dynamic tensile strength of frozen soil

    分析认为,随着温度的降低,冻土内有效含冰量、冰的抗拉强度以及土颗粒与冰水混合物之间的胶结力均逐渐增加,因此,冰颗粒和土颗粒与冰颗粒间的胶结面达到破坏状态所需的能量增加,宏观上表现为冻土动态拉伸强度增大。

    能量是材料发生破坏的驱动力,冻土试样从受载到最终破坏的整个过程中都伴随着能量的耗散,图 6为不同负温下两种冻土动态拉伸强度与吸收能的关系。冻土试样的吸收能与动态拉伸强度呈正线性相关,说明冻土强度越大,试样需要吸收更多的能量才能达到破坏状态。

    图  6  冻土动态拉伸强度与吸收能关系
    Figure  6.  Relationship between dynamic tensile strength and absorption energy of frozen soils

    采用高速摄像系统,得到了两种冻土动态劈裂拉伸试验中裂纹的扩展过程,如图 7所示。由图 7可以看出,冻结黏土和冻结砂土试样均在圆盘中心位置开始出现拉伸裂纹,随着拉伸应力的增大,裂纹沿加载方向迅速向试样两端扩展,并形成导致试样破坏的拉伸裂缝,与此同时,在试样和杆件的接触位置的剪切应力逐渐增加,损伤累积并最终形成由高剪切应力引起的三角破碎区。因此,冻土动态巴西圆盘劈裂试验的破坏形态满足中心起裂的破坏方式。

    图  7  冻土试样动态劈裂拉伸破坏过程
    Figure  7.  Dynamic splitting tensile failure process of frozen soil specimens

    应力逐渐增加,损伤累积并最终形成由高剪切应力引起的三角破碎区。因此,冻土动态巴西圆盘劈裂试验的破坏形态满足中心起裂的破坏方式。

    当加载时间为100 µs时,冻结黏土试样中心位置并未出现拉伸裂纹,而冻结砂土试样可观察到明显的拉伸裂纹,说明本次试验条件下,冻结黏土试样的起裂时间要晚于冻结砂土,该现象与动态拉伸应力-时间曲线中峰值应力对应起裂时间的规律相符。

    表 3为相同负温条件下,不同冲击气压时冻结黏土和冻结砂土的最终劈裂破坏模式。温度相同时,随着冲击气压增加,冻结黏土和冻结砂土试样的破坏程度随之加剧,表现为局部三角破碎区面积增大,且在本次试验条件下,冻结砂土试样的破碎区更为明显。在此,尝试从试样破坏的角度分析冻土动态拉伸强度存在加载率增强效应的内在机理,通过以上分析可知,冻土的加载率随冲击气压的增加而增大,在低冲击气压条件下,冻土内部微裂纹逐渐汇聚,并最终贯通形成宏观裂纹,导致试件破坏为沿轴向相对完整的两半,随着冲击气压的增大,试件会产生更多的裂纹分叉,即局部三角破碎区面积增加,此过程需要吸收更多的能量,在宏观上表现为拉伸强度增大。

    表  3  冻土试样劈裂破坏模式
    Table  3.  Splitting failure modes of frozen soil specimens
    土质类型 温度/℃ 冲击气压/MPa
    0.10 0.11 0.12 0.13
    冻结黏土 -15
    冻结砂土 -10
    下载: 导出CSV 
    | 显示表格

    开展了不同负温和加载率下冻结黏土和冻结砂土的动态巴西圆盘劈裂试验,从力学和能量耗散的角度分析了冻土的劈裂拉伸性能,借助高速摄像系统研究了冻土的动态劈裂拉伸破坏特性,得到以下两点结论。

    (1)随着冲击气压的增加,冻土的加载率呈线性增大,两种冻土的动态拉伸强度均随加载率的增加和温度的降低逐渐增大;不同负温条件下,冻土试样的吸收能与动态拉伸强度均呈正线性相关。

    (2)本次试验条件下,冻结砂土巴西圆盘试样达到动态拉伸峰值应力所需的时间要早于冻结黏土;冻土试样的初始裂纹出现在圆盘中心位置,且冻结黏土的裂纹出现时间要晚于冻结砂土,此后裂纹逐渐沿加载方向扩展并形成拉伸裂缝,与此同时,在试样和杆件的接触位置会形成由高剪切应力引起的三角破碎区;随着冲击气压的增加,巴西圆盘冻土试样的破坏程度加剧,三角破碎区面积增大。

  • 图  1   膨润土胶体形成及核素迁移[9]

    Figure  1.   Colloid formation and radionuclide migration [9]

    图  2   不同因素影响下的胶体吸附性

    Figure  2.   Adsorption properties of bentonite colloids under different influences

    图  3   膨润土胶体的快速迁移特征[21]

    Figure  3.   Rapid migration characteristics of bentonite colloids [21]

    图  4   不同因素影响下的胶体迁移性[17, 25]

    Figure  4.   Migration properties of bentonite colloids under different influences [17, 25]

    图  5   柱试验装置示意图[17, 27-28]

    Figure  5.   Schematic diagram of column test devices [17, 27-28]

    图  6   动态柱胶体-核素共迁移试验结果

    Figure  6.   Results of dynamic column co-migration tests

    图  7   偶极子流场试验原理

    Figure  7.   Schematic diagram of dipole flow field tests

    图  8   原位偶极子流场共迁移试验结果[34]

    Figure  8.   Results of dipole flow field migration [34]

    图  9   胶体-核素共迁移作用机理[22, 35]

    Figure  9.   Mechanism of colloid and nuclide co-migration[22, 35]

    图  10   核素在膨润土胶体的吸附-解吸动力学[37]

    Figure  10.   Adsorption-desorption kinetics of bentonite colloids [37]

    图  11   双重渗透率模型模拟结果[27]

    Figure  11.   Simulated results of dual permeability model[27]

    图  12   双重孔隙介质模型模拟结果[48]

    Figure  12.   Simulated results of double-porosity model [48]

    表  1   离子强度和pH对共迁移影响

    Table  1   Effect of ionic strength and pH on co-migration

    核素-胶体电解质(Ⅰ; pH)胶体状态穿/%效果文献
    Cs(Ⅰ)DW稳定、可移动0.08促进文献[29]
    Cs+BC 1.89
    Sr(Ⅱ)NaClO4 50 mM; 9.5稳定、可移动72促进文献[21]
    Sr+BC  100
    U(Ⅵ)NaCl 1 mM; 7稳定、可移动45促进文献[16]
    U+BC  68
    Cs(Ⅰ)碳酸盐微咸水170 mM; 7.6不稳定0.03~0.29促进文献[30]
    Cs+BC0.27~0.31
    Ce(Ⅲ)17~41阻滞
    Ce+BC0.8~1.4
    U(Ⅵ)39~67阻滞
    U+BC23~40
    Eu(Ⅲ)NaCl 1 mM; 6.5稳定、可移动34促进文献[17]
    Eu+BC  78
    Eu(Ⅲ)NaCl 10 mM; 6.5不稳定68阻滞
    Eu+BC  18
    Eu(Ⅲ)NaCl 1 mM; 3.5不稳定58阻滞
    Eu+BC  39
    下载: 导出CSV

    表  2   偶极子流场胶体-核素共迁移结果[34]

    Table  2   Co-migration results in dipole flow field [34]

    试验内容胶体分数/%阻滞因子回收率/%
    1单独迁移I(Ⅰ)-13101100
    Sr(Ⅱ)-850387
    Am(Ⅲ)-2436~580.8830
    Pu(Ⅳ)-2425~580.8718
    Th(IV)-23220~300.86
    Np(Ⅴ)-2370~10197
    U(Ⅵ)-2380~12153
    2共迁移I(Ⅰ)-131+BC0192
    Sr(II)-85+BC02.588
    Am(Ⅲ)-241+BC990.955
    Pu(IV)-244+BC840.977
    Th(IV)-232 + BC940.955
    Np(Ⅴ)-237 + BC0~1178
    U(Ⅵ)-233 + BC6198
    Cs-137+BC80.81;12170
    下载: 导出CSV
  • [1]

    PAN D Q, FAN Q H, LI P, et al. Sorption of Th(IV) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature[J]. Chemical Engineering Journal, 2011, 172(2/3): 898-905.

    [2]

    VILLAR M V, IGLESIAS R J, GUTIÉRREZ-ÁLVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57. doi: 10.1016/j.clay.2017.12.045

    [3]

    CUI Y J. On the hydro-mechanical behaviour of MX80 bentonite-based materials[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 565-574. doi: 10.1016/j.jrmge.2016.09.003

    [4]

    HE J G, LI Y, SU Y, et al. Influence of γ-irradiation and oxygen conditions on the diffusion of I-125 in crushed Beishan granite[J]. Applied Radiation and Isotopes, 2020, 163: 109224. doi: 10.1016/j.apradiso.2020.109224

    [5]

    XU W T, ZHANG Y S, LI X Z, et al. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China[J]. Engineering Geology, 2020, 269: 105553. doi: 10.1016/j.enggeo.2020.105553

    [6] 黄依艺, 陈宝. 高压实膨润土在处置库围岩裂缝中的侵入行为研究[J]. 岩石力学与工程学报, 2019, 38(12): 2561-2569. doi: 10.13722/j.cnki.jrme.2019.0198

    HUANG Yi-yi, CHEN Bao. Intrusion behaviors of highly compacted bentonite into host-rock fractures in a HLW disposal repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2561-2569. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0198

    [7]

    LIU R C, HUANG N, JIANG Y J, et al. A numerical study of shear-induced evolutions of geometric and hydraulic properties of self-affine rough-walled rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104211. doi: 10.1016/j.ijrmms.2020.104211

    [8]

    MISSANA T, ALONSO Ú, TURRERO M J. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository[J]. Journal of Contaminant Hydrology, 2003, 61(1/2/3/4): 17-31.

    [9]

    SVENSK KÄRNBRÄNSLEHANTERING AB. Äspö Hard Rock Laboratory Annual Report 2017[R]. SKB TR-18-10. Solna: Swedish Nuclear Fuel and Waste Management Co, 2019.

    [10]

    MÖRI A, ALEXANDER W R, GECKEIS H, et al. The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1/2/3): 33-47.

    [11]

    NERETNIEKS I, MORENO L. Revisiting Bentonite Erosion Understanding and Modelling Based on the BELBaR Project Findings[R]. SKB TR-17-12. Solna: Swedish Nuclear Fuel and Waste Management Co, 2018.

    [12]

    NOSECK U, FLlÜGGg J, REIMUS P, et al. Colloid Formation and Migration Project: Modelling of Tracer, Colloid and Radionuclide/Homologue Transport for Dipole CFM 06.002-Pinkel surface packer[R]. Nagra Technical Report 16-06. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2016.

    [13]

    XU Z, PAN D Q, SUN Y L, et al. Stability of GMZ bentonite colloids: Aggregation kinetic and reversibility study[J]. Applied Clay Science, 2018, 161: 436-443. doi: 10.1016/j.clay.2018.05.002

    [14]

    XU Z, SUN Y L, NIU Z W, et al. Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: Effect of pH, temperature and electrolyte concentration[J]. Applied Clay Science, 2020, 184: 105393. doi: 10.1016/j.clay.2019.105393

    [15]

    XIAN D F, ZHOU W Q, PAN D Q, et al. Stability analysis of GMZ bentonite colloids: aggregation mechanism transition and the edge effect in strongly alkaline conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 125020. doi: 10.1016/j.colsurfa.2020.125020

    [16]

    ZHANG Z, GAO C, SUN Y F, et al. Co-transport of U(VI) and bentonite colloids: Influence of colloidal gibbsite[J]. Applied Clay Science, 2021, 205: 106033. doi: 10.1016/j.clay.2021.106033

    [17] 徐真. 膨润土胶体与Eu(Ⅲ)的相互作用研究[D]. 兰州: 兰州大学, 2019.

    XU Zhen. Study on the Interaction between Bentonite Colloids and Eu(Ⅲ)[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)

    [18]

    TRAN E L, TEUTSCH N, KLEIN-BENDAVID O, et al. Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport[J]. Science of the Total Environment, 2018, 643: 260-269. doi: 10.1016/j.scitotenv.2018.06.162

    [19]

    NORRFORS K K, MARSAC R, BOUBY M, et al. Montmorillonite colloids: II. Colloidal size dependency on radionuclide adsorption[J]. Applied Clay Science, 2016, 123: 292-303. doi: 10.1016/j.clay.2016.01.017

    [20]

    SUN Z, CHEN Y G, CUI Y J, et al. Removal of europium on GMZ bentonite corroded by young cement water at different temperatures[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(2): 1297-1305. doi: 10.1007/s10967-018-6175-8

    [21]

    ALBARRAN N, MISSANA T, GARCÍA-GUTIÉRREZ M, et al. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids[J]. Journal of Contaminant Hydrology, 2011, 122(1/2/3/4): 76-85.

    [22]

    ZHANG W, TANG X Y, WEISBROD N, et al. A review of colloid transport in fractured rocks[J]. Journal of Mountain Science, 2012, 9(6): 770-787. doi: 10.1007/s11629-012-2443-1

    [23]

    TRAN E, KLEIN BEN-DAVID O, TEUTCH N, et al. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks[J]. Water Research, 2016, 100: 88-97. doi: 10.1016/j.watres.2016.04.075

    [24]

    YANG J W, ZHANG Z, CHEN Z Y, et al. Co-transport of U(VI) and gibbsite colloid in saturated granite particle column: Role of pH, U(VI) concentration and humic acid[J]. Science of the Total Environment, 2019, 688: 450-461. doi: 10.1016/j.scitotenv.2019.05.395

    [25]

    VILKS P, MILLER N H, VORAUER A. Laboratory bentonite colloid migration experiments to support the Äspö Colloid Project[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(14/15/16): 1035-1041.

    [26]

    MISSANA T, ALONSO Ú, GARCÍA-GUTIÉRREZ M, et al. Role of bentonite colloids on europium and plutonium migration in a granite fracture[J]. Applied Geochemistry, 2008, 23(6): 1484-1497. doi: 10.1016/j.apgeochem.2008.01.008

    [27]

    KUROSAWA S, IBARAKI M, YUI M, et al. Experimental and numerical studies on colloid-enhanced radionuclide transport-the effect of kinetic radionuclide sorption onto colloidal particles[J]. MRS Online Proceedings Library, 2004, 824(1): 456-461.

    [28]

    ELO O, HÖLTTÄ P, KEKÄLÄINEN P, et al. Neptunium(V) transport in granitic rock: a laboratory scale study on the influence of bentonite colloids[J]. Applied Geochemistry, 2019, 103: 31-39. doi: 10.1016/j.apgeochem.2019.01.015

    [29]

    KOLOMÁ K, ČERVINKA R, HANUSOVÁ I. 137Cs transport in crushed granitic rock: The effect of bentonite colloids[J]. Applied Geochemistry, 2018, 96: 55-61. doi: 10.1016/j.apgeochem.2018.06.005

    [30]

    TRAN E L, TEUTSCH N, KLEIN-BENDAVID O, et al. Radionuclide transport in brackish water through chalk fractures[J]. Water Research, 2019, 163: 114886. doi: 10.1016/j.watres.2019.114886

    [31]

    KUROSAWA S, JAMES S C, YUI M, et al. Model analysis of the colloid and radionuclide retardation experiment at the grimsel test site[J]. Journal of Colloid and Interface Science, 2006, 298(1): 467-475. doi: 10.1016/j.jcis.2005.12.036

    [32]

    SCHÄFER T, GECKEIS H, BOUBY M, et al. U, Th, Eu and colloid mobility in a granite fracture under near-natural flow conditions[J]. Radiochimica Acta, 2004, 92(9/10/11): 731-737.

    [33]

    VILKS P, BAIK M H. Laboratory migration experiments with radionuclides and natural colloids in a granite fracture[J]. Journal of Contaminant Hydrology, 2001, 47(2/3/4): 197-210.

    [34]

    GECKEIS H, SCHÄFER T, HAUSER W, et al. Results of the colloid and radionuclide retention experiment (CRR) at the Grimsel Test Site (GTS), Switzerland - impact of reaction kinetics and speciation on radionuclide migration[J]. Radiochimica Acta, 2004, 92(9/10/11): 765-774.

    [35]

    KANTI SEN T, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2/3): 71-96.

    [36]

    DITTRICH T M, BOUKHALFA H, WARE S D, et al. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids[J]. Journal of Environmental Radioactivity, 2015, 148: 170-182. doi: 10.1016/j.jenvrad.2015.07.001

    [37]

    MISSANA T, GARCı́A-GUTIÉRREZ M, ALONSO Ú. Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment[J]. Applied Clay Science, 2004, 26(1/2/3/4): 137-150.

    [38]

    HUBER F, KUNZE P, GECKEIS H, et al. Sorption reversibility kinetics in the ternary system radionuclide- bentonite colloids/nanoparticles-granite fracture filling material[J]. Applied Geochemistry, 2011, 26(12): 2226-2237. doi: 10.1016/j.apgeochem.2011.08.005

    [39]

    TELFEYAN K, REIMUS P W, BOUKHALFA H, et al. Aging effects on Cesium-137 (137Cs) sorption and transport in association with clay colloids[J]. Journal of Colloid and Interface Science, 2020, 566: 316-326. doi: 10.1016/j.jcis.2020.01.033

    [40]

    TANG X Y, WEISBROD N. Dissolved and colloidal transport of cesium in natural discrete fractures[J]. Journal of Environmental Quality, 2010, 39(3): 1066-1076. doi: 10.2134/jeq2009.0345

    [41]

    YE X Y, CUI R J, DU X Q, et al. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge[J]. Groundwater, 2019, 57(5): 764-771. doi: 10.1111/gwat.12872

    [42]

    GE M T, WANG D J, YANG J W, et al. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength[J]. Water Research, 2018, 147: 350-361. doi: 10.1016/j.watres.2018.10.004

    [43]

    GHIASI B, NIKSOKHAN M H, MAHDAVI MAZDEH A. Co-transport of chromium(VI) and bentonite colloidal particles in water-saturated porous media: Effect of colloid concentration, sand gradation, and flow velocity[J]. Journal of Contaminant Hydrology, 2020, 234: 103682. doi: 10.1016/j.jconhyd.2020.103682

    [44]

    LI X F, ZHANG W J, QIN Y Q, et al. Fe-colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions[J]. Science of the Total Environment, 2019, 647: 494-506. doi: 10.1016/j.scitotenv.2018.08.010

    [45]

    ZVIKELSKY O, WEISBROD N. Impact of particle size on colloid transport in discrete fractures[J]. Water Resources Research, 2006, 42(12): 1-12. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fw3.bgu.ac.il%2Fziwr%2Ffaculty%2Fweisbrod%2Fdocuments%2FZvikelskyandWeisbrod2006.pdf

    [46]

    IBARAKI M, SUDICKY E A. Colloid-facilitated contaminant transport in discretely fractured porous media: 1. Numerical formulation and sensitivity analysis[J]. Water Resources Research, 1995, 31(12): 2945-2960. doi: 10.1029/95WR02180

    [47]

    BAEK I, PITT W W Jr. Colloid-facilitated radionuclide transport in fractured porous rock[J]. Waste Management, 1996, 16(4): 313-325. doi: 10.1016/S0956-053X(96)00074-8

    [48]

    REICHE T, NOSECK U, SCHÄFER T. Migration of contaminants in fractured-porous media in the presence of colloids: effects of kinetic interactions[J]. Transport in Porous Media, 2016, 111(1): 143-170. doi: 10.1007/s11242-015-0585-7

  • 期刊类型引用(5)

    1. 唐清枫,徐真,孙亚楼,张奇,谭琪,潘多强,吴王锁. 黏土矿物-生物复合胶体影响放射性核素迁移行为与机理研究进展. 核化学与放射化学. 2025(01): 1-16 . 百度学术
    2. 吴鹏,王驹,凌辉,周志超,段佳欣,李南,段先哲. 甘肃北山新场深部地下水中铀的赋存形态及其影响因素的地球化学模拟研究. 原子能科学技术. 2024(05): 1007-1016 . 百度学术
    3. 田云婷,谭凯旋,李咏梅,李春光,唐治鹏,李小杰. 还原条件下膨润土胶体稳定性研究. 南华大学学报(自然科学版). 2024(03): 47-52 . 百度学术
    4. 邹威燕,周书葵,段毅. 不同地层中放射性核素迁移模型. 有色金属(冶炼部分). 2022(01): 79-87 . 百度学术
    5. 朱帅润,李绍红,何博,吴礼舟. 改进的Picard法在非饱和土渗流中的应用研究. 岩土工程学报. 2022(04): 712-720 . 本站查看

    其他类型引用(8)

图(12)  /  表(2)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  41
  • PDF下载量:  259
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2022-11-30
  • 刊出日期:  2021-11-30

目录

/

返回文章
返回