Mechanism for stress abnormality and rock burst in variation zone of roof-stratum thickness
-
摘要: 顶板覆岩结构是影响煤矿冲击矿压发生的主要因素之一,在坚硬覆岩厚度变化区也容易诱发冲击矿压,这一现象在内蒙深部矿区逐渐凸显。基于弹性力学理论分析了覆岩厚度变化区煤层应力异常的力学机制,采用FLAC3D数值模拟方法研究了覆岩厚度变化对煤层应力分布特征和能量演化的影响规律,揭示了坚硬覆岩厚度变化区煤层开采诱发冲击矿压的机理。研究结果表明:坚硬覆岩较厚区的构造应力比较薄区大,覆岩厚度变化越大或覆岩性质差异越大,构造应力变化越大;工作面在覆岩厚度变化区开采时,受超前支承压力与突变的构造应力叠加影响,覆岩厚度变化区至较厚区应力集中程度较大,该区域积聚的弹性能主要向工作面前方巷道释放,冲击矿压危险更大。两例覆岩厚度变化区工程案例分析表明,在坚硬覆岩厚度变化区及变化区向较厚区过渡时微震事件分布较多,能量释放剧烈,巷道破坏明显,与理论分析较为吻合。Abstract: The roof stratum structure is one of the main factors affecting coal burst, and the coal burst is also easily induced in the variation zone of roof-stratum thickness. This phenomenon is gradually severe in deep mining areas in Inner Mongolia. The stress distribution in the variation zone of roof-stratum thickness is analyzed based on the theory of elastic mechanics. The FLAC3D numerical modeling is then performed to investigate the influences of the variation of stratum thickness on the stress distribution characteristics and energy evolution in the coal seam. The coal burst mechanism due to the variation of stratum thickness is finally released. The results show that the tectonic stress in the thick roof zone is larger than that in the thin roof zone, and the stress gradient increases with the increasing variation in the stratum thickness or the roof properties. In the variation zone of roof-stratum thickness, the superposition of the advanced abutment pressure and the increasing tectonic stress results in a high-stress concentration area. A higher coal burst risk might thus occur in the roadway near the longwall in the roof variation zone to the thicker roof zone, where more intensive elastic energy is released in the coal/rock mass. The comparative analysis of two field cases shows that more seismic activities occur in the variation zone of stratum thickness and from the variation zone to the thicker stratum zone, and the roadway damage is obvious, which is consistent with the theoretical analysis.
-
Keywords:
- rock burst /
- overburden thickness /
- tectonic stress /
- abnormality /
- micro seismic activity /
- case analysis
-
-
表 1 模型选用参数
Table 1 Model parameters
序号 岩性 厚度/m 密度/(kg·m-3) 弹性模量/GPa 泊松比 1 细粒砂岩 20 2400 20 0.20 2 中粒砂岩 30* 2500 30* 0.15 砂质泥岩 30* 2200 10 0.25 3 砂质泥岩 10 2200 10 0.25 4 细粒砂岩 20 2400 20 0.20 5 煤层 6 1400 5 0.30 6 砂质泥岩 14 2200 10 0.25 7 细粒砂岩 20 2400 20 0.20 注:表中带“*”参数为方案一、方案二中的可变量。 表 2 煤岩体应变软化参数
Table 2 Strain-softening parameters of coal and rock
塑性应变 中粒砂岩 砂质砂岩 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 0 10.00 36 18 5.00 28 12 1×10-4 6.00 32 10 3.00 24 6 2×10-4 4.00 28 5 2.00 22 2 5×10-4 2.00 24 0 1.00 20 0 1 2.00 24 0 1.00 20 0 塑性应变 细粒砂岩 煤层 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 黏聚力/MPa 摩擦角/(°) 剪胀角/(°) 0 8.00 32 16 4.00 25 10 1×10-4 5.00 28 8 2.00 22 5 2×10-4 3.00 24 4 1.00 20 2 5×10-4 1.50 22 0 0.50 18 0 1 1.50 22 0 0.50 18 0 -
[1] 窦林名, 周坤友, 宋士康, 等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报, 2021, 29(4): 917-932. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm DOU Linming, ZHOU Kunyou, SONG Shikang, et al. Occurrence mechanism, monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology, 2021, 29(4): 917-932. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104002.htm
[2] 李东, 姜福兴, 陈洋, 等. 深井富水工作面"动—静"应力效应诱发冲击地压机理研究[J]. 岩土工程学报, 2018, 40(9): 1714-1722. doi: 10.11779/CJGE201809019 LI Dong, JIANG Fuxing, CHEN Yang, et al. Mechanism of rockburst induced by "dynamic-static" stress effect in water-rich working face of deep well[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1714-1722. (in Chinese) doi: 10.11779/CJGE201809019
[3] GUO W Y, GU Q H, TAN Y L, et al. Case studies of rock bursts in tectonic areas with facies change[J]. Energies, 2019, 12(7): 1330-1341. doi: 10.3390/en12071330
[4] 孙振武. 煤层厚度局部变化区域地应力场分布的数值模拟[J]. 矿山压力与顶板管理, 2003, 20(3): 95-97, 100. doi: 10.3969/j.issn.1673-3363.2003.03.037 SUN Zhenwu. Numerical simulation on stress field distribution in partial transformation area of coal seam height[J]. Ground Pressure and Strata Control, 2003, 20(3): 95-97, 100. (in Chinese) doi: 10.3969/j.issn.1673-3363.2003.03.037
[5] ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, et al. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: application to a practical case[J]. International Journal of Coal Geology, 2009, 79(4): 157-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSW202103004.htm [6] ZHU G G, DOU L M, LI Z L, et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences, 2016, 9(5): 365. doi: 10.1007/s12517-016-2356-3
[7] 南存全, 丁维波, 吕进国, 等. 采动影响下煤厚变异区超前支承压力变化规律的数值模拟[J]. 安全与环境学报, 2018, 18(6): 2200-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm NAN Cunquan, DING Weibo, LÜ Jinguo, et al. Numerical simulation for the changing regularity of the leading support pressure in the coal seam variety region under the mining impact[J]. Journal of Safety and Environment, 2018, 18(6): 2200-2204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806027.htm
[8] 王勇, 杨毕, 邓川, 等. 煤厚变化对冲击地压影响的数值模拟分析[J]. 煤矿安全, 2017, 48(5): 198-201. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm WANG Yong, YANG Bi, DENG Chuan, et al. Numerical simulation analysis of influence of coal thickness change on rock burst[J]. Safety in Coal Mines, 2017, 48(5): 198-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201705055.htm
[9] 赵同彬, 郭伟耀, 谭云亮, 等. 煤厚变异区开采冲击地压发生的力学机制[J]. 煤炭学报, 2016, 41(7): 1659-1666. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rock burst caused by mining in the variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201607009.htm
[10] 蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013. CAI Meifeng. Rock Mechanics and Engineering[M]. 2nd ed. Beijing: Science Press, 2013. (in Chinese)
[11] CAO W Z, SHI J Q, DURUCAN S, et al. Gas-driven rapid fracture propagation under unloading conditions in coal and gas outbursts[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104325. doi: 10.1016/j.ijrmms.2020.104325
[12] 许家林, 钱鸣高, 马文顶, 等. 岩层移动模拟研究中加载问题的探讨[J]. 中国矿业大学学报, 2001, 30(3): 252-255. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm XU Jialin, QIAN Minggao, MA Wending, et al. Discussion on loading problem in physical and numerical simulation of strata movement[J]. Journal of China University of Mining & Technology, 2001, 30(3): 252-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200103009.htm
[13] 张朝鹏. 不同赋存深度煤岩力学参数差异性及采动力学行为研究[D]. 成都: 四川大学, 2017. ZHANG Chaopeng. Differences of Coal Mechanical Parameters and Mining Induced Mechanical Behavior Induced by Different Depths[D]. Chengdu: Sichuan University, 2017. (in Chinese)
[14] 王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2944-2954. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm WANG Lujun, ZHOU Hongwei, RONG Tenglong, et al. Stress field evolution law and disturbance characteristic of coal at depth under mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2944-2954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1035.htm
[15] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
[16] 窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm DOU Linming, HE Jiang, CAO Anye, et al. Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine[J]. Journal of China Coal Society, 2015, 40(7): 1469-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201507001.htm
[17] CAI W, DOU L M, SI G Y, et al. A new seismic-based strain energy methodology for coal burst forecasting in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104086.
[18] 苗小虎, 姜福兴, 王存文, 等. 微地震监测揭示的矿震诱发冲击地压机理研究[J]. 岩土工程学报, 2011, 33(6): 971-976. http://cge.nhri.cn/cn/article/id/14040 MIAO Xiaohu, JIANG Fuxing, WANG Cunwen, et al. Mechanism of microseism-inducd rock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971-976. (in Chinese) http://cge.nhri.cn/cn/article/id/14040
-
期刊类型引用(9)
1. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
2. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
3. 徐斌,王星亮,庞锐,陈柯好. 考虑组构演化的砂砾土弹塑性本构模型. 岩土力学. 2024(11): 3197-3211 . 百度学术
4. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 . 百度学术
5. 邢明源,胡欣宇. 基于神经网络模型的砾性土液化预测. 华北科技学院学报. 2021(03): 75-80 . 百度学术
6. 付大庆,董德学,张修磊,孙浩东,史振铜,白书昕. 弥河朐山拦河闸砾石液化探讨. 水利技术监督. 2021(09): 162-166 . 百度学术
7. 王海,王永志,汤兆光,袁晓铭,段雪锋. 剪切波速-相对密度联合试验与经验公式验证. 地下空间与工程学报. 2021(06): 1881-1887 . 百度学术
8. 黄茂松,边学成,陈育民,王睿,顾晓强,周燕国. 土动力学与岩土地震工程. 土木工程学报. 2020(08): 64-86 . 百度学术
9. 王世岐,张向阳,魏峰先,王健. 逐一土层进行液化等级判别初探. 工程勘察. 2020(12): 27-29 . 百度学术
其他类型引用(7)