Microstructural properties of unsaturated Q3 loess and their influence mechanisms on strength properties
-
摘要: 结构性是影响非饱和原状黄土力学变形特征的重要因素,但鲜有从微细观与宏观相结合的角度分析原状与重塑黄土结构性差异的相关报道。以同一物理力学条件下的非饱和原状Q3黄土及其重塑土为研究对象,进行控制吸力和净围压为常数的非饱和三轴剪切试验,并通过微细观扫描以揭示两者结构差异对强度特性的影响机制。试验表明原状和重塑Q3黄土黏聚力c均随吸力增加呈线性增加趋势,且原状土黏聚力大于重塑土;内摩擦角受吸力影响较小,两者差异不大。原状黄土颗粒棱角明显,颗粒间为架空排列且具有良好胶结作用,结构性强并稳定;重塑黄土颗粒棱角浑圆,颗粒间为镶嵌接触且胶结作用破坏,土骨架作用不明显,结构性弱,形成的团粒结构易于压缩,团粒和颗粒联结不稳固,进而原状土具备更好的抵御外部剪切破坏的能力。同一物理条件下的原状和重塑黄土中孔径小于50 μm分别占试样总体积的22.7%和16.3%,50~200 μm孔径分别为71%和83.7%,大于200 μm分别为6.3%和0%。这表明支架大孔隙结构没有为原状土提供更大的变形空间,而良好的胶结作用和结构性保证了原状黄土具备较高的强度特征。Abstract: Structure is the important factor affecting the mechanical deformation characteristics of unsaturated undisturbed loess, but there are few reports on the structural differences between undisturbed and remolded loesses from the perspective of combining micro and macro-scopic views. Taking the unsaturated undisturbed Q3 loess and its remolded soil under the same physical and mechanical conditions as the research objects, the unsaturated triaxial shear tests with the control suction and net confining pressure as constants are carried out, and the influence mechanism of the structural differences between the two on the strength characteristics is revealed by micro and meso-scopic scannings. The tests show that the cohesions of the undisturbed and remolded Q3 loess increase linearly with the increase of matric suction, and the cohesion of the undisturbed soil is greater than that of the remolded soil. The angle of internal friction is basically constant and less affected by the matric suction, and the difference between the two is not significant. The undisturbed loess particles have obvious edges and corners, which are in bracket contact and have good cementation, and the structure of the undisturbed loess is strong. The remolded loess particles are close to round and in inlaid contact, and the cementation between them is destroyed. The soil skeleton function of the remolded loess is not obvious and the structure is weak, the formed aggregate structure is easy to compress, and the connection between aggregates and particles is not stable, thus forming the undisturbed soil with better resistance to the external shear failure. Under the same physical conditions, the pore sizes of undisturbed and remolded loesses less than 50 μm account for 22.7% and 16.3% of the total volume of the samples, respectively. The pore sizes between 50 μm and 200 μm are 71% and 83.7%, respectively, and those larger than 200 μm are 6.3% and 0%, respectively. The open structure composing of the bracket macro-void does not provide deformation space for the undisturbed soil, but the good cementation and structural properties ensure that the undisturbed loess has high strength characteristics.
-
-
-
[1] TERZAGHI K. Theoretical Soil Mechanics[M]. Hoboken: John Wiley & Sons, Inc., 1943.
[2] CASAGRANDE A. The stucture of clay and its importance in foundation engineering[J]. Journal of Boston Society of Civil Engineering, 1932, 19.
[3] MITEHELL J K. Fundamenials or Soil Behavioy[M]. 2nd ed. New York: Wiley. 1993.
[4] 谢定义, 邢义川. 黄土土力学[M]. 北京: 高等教育出版社, 2016. XIE Ding-yi, XING Yi-chuan. Soil Mechanics for Loess Soils[M]. Beijing: Higher Education Press, 2016. (in Chinese)
[5] 高国瑞. 中国黄土的微结构[J]. 科学通报, 1980, 25(20): 945-948. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198020010.htm GAO Guo-rui. Microstructure of Chinese loess[J]. Chinese Science Bulletin, 1980, 25(20): 945-948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198020010.htm
[6] 高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学, 1980, 10(12): 1203-1208, 1237. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198012008.htm GAO Guo-rui. Microstructure classification and collapsibility of loess[J]. China Science, 1980, 10(12): 1203-1208, 1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198012008.htm
[7] 高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199004000.htm GAO Guo-rui. A structure theory for collapsing deformation of loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199004000.htm
[8] 雷祥义. 土显微结构类型与物理力学性质指标之间的关系[J]. 地质学报, 1989, 63(2): 182-191. LEI Xiang-yi. Relationship between microstructure types and physical and mechanical properties of soil[J]. Acta Geologica Sinica, 1989, 63(2): 182-191. (in Chinese)
[9] LI X J, HU C Z, LI F Y, et al. Determining soil water characteristic curve of lime treated loess using multiscale structure fractal characteristic[J]. Scientific Reports, 2020, 10: 21569. doi: 10.1038/s41598-020-78489-7
[10] DENG L S, FAN W, LIU S P, et al. Quantitative research and characterization of the loess microstructure in the bai Lu tableland, Shaanxi Province, China[J]. Advances in Civil Engineering, 2020: 1-14.
[11] WANG Y, YANG H, JING X. Structural characteristics of natural loess in northwest China and its effect on shear behavior[J]. Geotechnical and Geological Engineering, 2021, 39(1): 65-78.
[12] WEI Y N, FAN W, YU B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess[J]. CATENA, 2020, 192: 104585.
[13] SAMOILYCH K O. Determination of influence of the microstructure on the physical and mechanical properties of loess soils in Dnieper region[J]. Journal of Geology, Geography and Geoecology, 2016, 24(1): 125-132.
[14] NG C W W, MU Q Y, ZHOU C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures[J]. Canadian Geotechnical Journal, 2017, 54(2): 270-279.
[15] NG C W W, SADEGHI H, JAFARZADEH F, et al. Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions[J]. Canadian Geotechnical Journal, 2020, 57(2): 221-235.
[16] WANG J D, LI P, MA Y, et al. Evolution of pore-size distribution of intact loess and remolded loess due to consolidation[J]. Journal of Soils and Sediments, 2019, 19(3): 1226-1238.
[17] NAN J J, PENG J B, ZHU F J, et al. Shear behavior and microstructural variation in loess from the Yan'an area, China[J]. Engineering Geology, 2021, 280: 105964.
[18] LI Y R. A review of shear and tensile strengths of the Malan Loess in China[J]. Engineering Geology, 2018, 236: 4-10.
[19] 陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
[20] 蒋明镜, 孙若晗, 李涛, 等. 一个非饱和结构性黄土三维胶结接触模型[J]. 岩土工程学报, 2019, 41(增刊1): 213-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. A three-dimensional cementation contact model for unsaturated structural loess[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 213-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1055.htm
[21] YAO Z H, CHEN Z H, FANG X W, et al. Elastoplastic damage seepage-consolidation coupled model of unsaturated undisturbed loess and its application[J]. Acta Geotechnica, 2020, 15(6): 1637-1653.
[22] 姚志华, 连杰, 陈正汉, 等. 考虑细观结构演化的非饱和Q3原状黄土弹塑性本构模型[J]. 岩土力学, 2018, 39(5): 1553-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm YAO Zhi-hua, LIAN Jie, CHEN Zheng-han, et al. An elastic-plastic constitutive model for unsaturated Q3 undisturbed loess considering meso—structured evolution[J]. Rock and Soil Mechanics, 2018, 39(5): 1553-1563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm
[23] 王腾, 周茗如, 王晋伟, 等. 黄土塬地区非饱和结构性黄土的强度特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1032.htm WANG Teng, ZHOU Ming-ru, WANG Jin-wei, et al. Experimental study on strength properties of unsaturated intact loess in loess tableland regions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 189-197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1032.htm
[24] LEROUDIL S, TAVENAS F, BRUCY F, et al. Bebavior of destructured natural clay[J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, 1979, 105(6): 759-778.
[25] 王永焱, 滕志宏, 岳乐平. 黄土中石英颗粒表面结构与中国黄土的成因[J]. 地理学报, 1982, 37(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198201004.htm WANG Yong-yan, TENG Zhi-hong, YUE Le-ping. et al. Surface texture of quartz grains under the scaning electron microscope and the genesis of loess in China[J]. Acta Geographica Sinica, 1982, 37(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198201004.htm
-
期刊类型引用(5)
1. 赵云,杨忠方,张朋,凌道盛. 非饱和砂土中深埋活动门试验松动土压力计算. 岩土工程学报. 2025(04): 769-778 . 本站查看
2. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 . 百度学术
3. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 . 百度学术
4. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 . 百度学术
5. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看
其他类型引用(10)