Moisture distribution in sewage sludge based on soil-water characteristic curve
-
摘要: 市政污泥的脱水特性与其水分分布特性密切相关,对市政污泥的水分分布特性开展研究具有重要的理论意义。目前测试污泥水分分布曲线采用热重-差热分析方法,该方法中试样量仅有50 mg,测试结果复现性较差。拟提出一种基于持水曲线的市政污泥水分分布测试方法,并构建了新测试方法的理论框架。随后采用渗析法联合相对湿度法测试了市政污泥的水分分布曲线,并与传统的热重差热试验结果进行对比分析。研究结果表明,基于持水曲线的污泥水分分布测试方法具有如下特点:试验量多;测试过程中试样结构状态变化小;测试的结合能范围更广泛。Abstract: The dewatering characteristic of sewage sludge is closely related to its moisture distribution. The researches on the moisture distribution characteristics in the sewage sludge are of important theoretical significance. Currently the measurement of moisture distribution curve of the sewage sludge mainly adopts the thermal gravimetry-differential thermal method, in which the amount of samples is only 50 mg, and the reproducibility of the tests is poor. A new method for measuring the moisture distribution in the sewage sludge based on the soil-water characteristic curve is proposed. Firstly based on the relationship between water potential and bond strength of moisture in the sewage sludge, the formula for bond strength of moisture and matric suction of the sewage sludge is derived. Accordingly the moisture distribution curve of the sewage sludge can be obtained by measuring its soil-water characteristic curve. The osmotic method and the relative humidity method are employed to obtain the moisture distribution curve of the sewage sludge. The results are compared with those based on the combined thermal gravimetry-differential thermal method. The proposed method for the moisture distribution in sewage sludge based on the soil-water characteristic curve has following features: the amount of samples is enough and representative, the change of structure of samples is small during measurement process, and the range of bond strength of measured moisture is wider.
-
-
表 1 污泥试样的基本性质
Table 1 Basic properties of sewage sludge
含水率/% 有机质含量/% 密度/(g·cm-3) 相对质量密度 pH 粒径/μm Zeta电位/mV 860 40 1.05 1.8 8.2 0.6~677 -22.5 表 2 PEG20000溶液的浓度及其对应的吸力
Table 2 Concentrations of PEG 20000 solution and corresponding osmotic suction pressures
吸力/MPa 4.2 1 0.625 0.3162 0.1 0.033 浓度c 0.618 0.301 0.238 0.169 0.095 0.055 表 3 相对湿度法中饱和盐溶液及控制吸力值
Table 3 Salt solutions and corresponding suction pressures in relative humidity method
饱和盐溶液 相对湿度/% 对应吸力/MPa MgCl2.6H2O 33.1 149.51 K2CO3 43.2 113.50 Mg(NO3)2.6H2O 55.0 82.00 NaCl 75.5 38.00 (NH4)2SO4 81.0 24.90 NaSO3.7H2O 90.9 12.90 K2SO4 97.6 3.29 -
[1] 荀锐, 王伟, 乔玮. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 2009, 30(3): 851-856. doi: 10.3321/j.issn:0250-3301.2009.03.038 XUN Rui, WANG Wei, QIAO Wei. Water distribution and dewatering performance of the hydrothermal conditioned sludge[J]. Environmental Science, 2009, 30(3): 851-856. (in Chinese) doi: 10.3321/j.issn:0250-3301.2009.03.038
[2] 谢浩辉, 麻红磊, 池涌, 等. 污泥结合水测量方法和水分分布特性[J]. 浙江大学学报(工学版), 2012, 46(3): 503-508. doi: 10.3785/j.issn.1008-973X.2012.03.019 XIE Hao-hui, MA Hong-lei, CHI Yong, et al. Bound water measurement methods and moisture distribution within sewage sludge[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(3): 503-508. (in Chinese) doi: 10.3785/j.issn.1008-973X.2012.03.019
[3] DICK R I, DRAINVILLE M R. The role of water in sludge dewatering[J]. Water Environment Research, 1995, 67(2): 251. doi: 10.2175/106143095X131448
[4] SMITH J K, VESILIND P A. Dilatometric measurement of bound water in wastewater sludge[J]. Water Research, 1995, 29(12): 2621-2626. doi: 10.1016/0043-1354(95)00144-A
[5] SMOLLEN M. Categories of moisture content and dewatering characteristics of biological sludges[C]//Proceedings of the fourth World Filtration Congress, 1986, Ostend.
[6] LEE D J. Measurement of bound water in waste activated sludge: use of the centrifugal settling method[J]. Journal of Chemical Technology & Biotechnology, 1994, 61(2): 139-144.
[7] LEE D J, HSU Y H. Measurement of bound water in sludges: a comparative study[J]. Water Environment Research, 1995, 67(3): 310-317. doi: 10.2175/106143095X131529
[8] CHEN G W, HUNG W T, CHANG I L, et al. Continuous classification of moisture content in waste activated sludges[J]. Journal of Environmental Engineering, 1997, 123(3): 253-258. doi: 10.1061/(ASCE)0733-9372(1997)123:3(253)
[9] WU C C, HUANG C, LEE D J. Bound water content and water binding strength on sludge flocs[J]. Water Research, 1998, 32(3): 900-904. doi: 10.1016/S0043-1354(97)00234-0
[10] CHU C P, LEE D J. Moisture distribution in sludge: effects of polymer conditioning[J]. Journal of Environmental Engineering, 1999, 125(4): 340-345. doi: 10.1061/(ASCE)0733-9372(1999)125:4(340)
[11] VAXELAIRE J, CÉZAC P. Moisture distribution in activated sludges: a review[J]. Water Research, 2004, 38(9): 2215-2230. doi: 10.1016/j.watres.2004.02.021
[12] 谢浩辉. 污泥的结合水测量和热水解试验研究[D]. 杭州: 浙江大学, 2011. XIE Hao-hui. Research on Bound Water Measurement and Thermal Hydrolysis Test of Sewage Sludge[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
[13] 占鑫杰. 市政污泥的化学调理和真空预压联合作用固结机理及应用[D]. 杭州: 浙江大学, 2015. ZHAN Xin-jie. Study on the Consolidation Mechanism of Sewage Sludge under Combined Effect of Chemical Conditioning and Vacuum Preloading and its Application[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[14] 耿增超, 戴伟. 土壤学[M]. 北京: 科学出版社, 2011. GENG Zeng-chao, DAI Wei. Soil Science[M]. Beijing: Science Press, 2011. (in Chinese)
[15] HILHORST M A, DIRKSEN C, KAMPERS F W H, et al. Dielectric relaxation of bound water versus soil matric pressure[J]. Soil Science Society of America Journal, 2001, 65(2): 311-314. doi: 10.2136/sssaj2001.652311x
[16] 徐敩祖, 奥利奋特 J L, 泰斯 A R. 土水势、未冻水含量和温度[J]. 冰川冻土, 1985, 7(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198501000.htm XU Xiao-zu, OLIPHANT J L, TICE A R. Soil water potential, unfrozen water content and temperature[J]. Journal of Glaciology and Geocryology, 1985, 7(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198501000.htm
[17] 土工试验方法标准:GB/T 50123—2019[S]. 1999. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
[18] 城市污水处理厂污泥检验方法:CJ/T 221—2005[S]. 2005. Determination Method for Municipal Sludge in Wastewater Treatment Plant: CJ/T 221—2005[S]. 2005. (in Chinese)
[19] DELAGE P, HOWAT M D, CUI Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay[J]. Engineering Geology, 1998, 50(1/2): 31-48.
[20] 叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征[J]. 岩土工程学报, 2005, 27(3): 347-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300L.htm YE Wei-min, TANG Yi-qun, CUI Yu-jun. Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 347-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300L.htm
[21] 吴宏伟, 陈锐. 非饱和土试验中的先进吸力控制技术[J]. 岩土工程学报, 2006, 28(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200602000.htm WU Hong-wei, CHEN Rui. Advanced suction control technology in unsaturated soil test[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200602000.htm