• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

任意解流流固耦合数值方法及在砂土渗流分析中应用

王胤, 陶奕辰, 程旷, 杨庆

王胤, 陶奕辰, 程旷, 杨庆. 任意解流流固耦合数值方法及在砂土渗流分析中应用[J]. 岩土工程学报, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015
引用本文: 王胤, 陶奕辰, 程旷, 杨庆. 任意解流流固耦合数值方法及在砂土渗流分析中应用[J]. 岩土工程学报, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015
WANG Yin, TAO Yi-chen, CHENG Kuang, YANG Qing. Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015
Citation: WANG Yin, TAO Yi-chen, CHENG Kuang, YANG Qing. Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015

任意解流流固耦合数值方法及在砂土渗流分析中应用  English Version

基金项目: 

国家自然科学基金项目 51879035

国家自然科学基金项目 51890912

详细信息
    作者简介:

    王胤(1982— ),男,教授,博士生导师,主要从事海洋土力学、海洋结构基础及相关岩土数值方法方面的教学和科研工作。E-mail:y.wang@dlut.edu.cn

  • 中图分类号: TU43

Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil

  • 摘要: 基于欧拉-拉格朗日连续体与非连续体耦合理论进行岩土工程流固耦合问题分析是一种较新颖和盛行的方法。针对该理论下的全解流(Fully-resolved)耦合与非解流(Un-resolved)耦合方法各自的缺陷,在已有的半解流(Semi-resolved)流固耦合数值方法(将全解流与非解流联合)基础上,通过引入修正的高斯权函数,建立了新的任意解流流固耦合方法(Arbitrary Resolved-Unresolved CFD-DEM coupling method)。该任意解流流固耦合方法能够较好地解决全解流方法中由于对粗颗粒周围流场精细化所带来的计算量过大问题;同时,成功地解决了流体网格内细颗粒较大时无法获得局部平均化变量问题;因此,该方法能够对具有一定粒径级配砂土土体的流固耦合问题开展模拟分析。通过室内砂土向上渗流试验,对所建立的任意解流流固耦合方法的准确性和有效性进行了验证;进一步地,采用该任意解流流固耦合模型,从细观层面上分析和研究了砂土渗流过程中水力梯度、土体变形随渗流速度变化规律。建立的任意解流流固耦合方法能够为岩土工程土体渗流问题的研究提供新的方法和手段。
    Abstract: The Euler-Lagrange coupling scheme based on the continuous and discrete theories has been becoming increasingly popular in numerical analysis of fluid-particle interaction. In this study, by introducing the modified Gaussian weighting function, a new arbitrary resolved-unresolved CFD-DEM coupling method (ARU CFD-DEM) is proposed based on the authors’ previous developed semi-resolved coupling approach by combing the fully-resolved and un-resolved coupling methods. This ARU CFD-DEM method is powerful to relieve the overload in computation due to refining the flow field around the coarse particles in the fully-resolving method. At the same time, it is also able to solve the difficulty in computing the local averaging variables when fine particles with large diameter exist in fluid grids. By doing so, the ARU CFD-DEM is able to simulate the fluid-particle interaction in sand mass which contains a wide range of particle diameters. By comparing with the results of upward seepage flow tests in sand, the accuracy and effectiveness of ARU CFD-DEM model is verified. Furthermore, the hydraulic gradient-flow velocity relationship and soil deformation-flow velocity relationship in the upward seepage flow are analyzed on the particle-scale by the ARU CFD-DEM. The proposed ARU CFD-DEM model can provide a new tool for investigating the fluid-particle interaction in the seepage flow in geotechnical engineering.
  • 图  1   高斯权函数支撑域示意图

    Figure  1.   Diagram of supporting domain of Gaussian-based weighting function

    图  2   任意解流耦合数值求解流程图

    Figure  2.   Flow chart of numerical solution of ARU CFD-DEM coupling

    图  3   基准渗流模型及边界条件

    Figure  3.   CFD-DEM model for benchmark of seepage flow

    图  4   全解流与任意解流用时对比

    Figure  4.   Comparison in CPU time between full resolved and ARU method

    图  5   向上渗流试验布置图

    Figure  5.   Set-up of upward seepage tests

    图  6   向上渗流数值模型及边界条件

    Figure  6.   CFD-DEM model of seepage tests

    图  7   水力梯度、滤层变形随表观渗流速度变化关系

    Figure  7.   Relationship between hydraulic gradient and coarse-particle layer deformation with superficial flow velocity

    图  8   不同阶段粗颗粒滤层变形随表观渗流速度变化情况

    Figure  8.   Evolution of coarse-particle layer deformation with superficial flow velocity

    图  9   土层孔隙率分布随表观渗流速度变化情况(粗细颗粒粒径比αs=6.7)

    Figure  9.   Evolution of porosity profile with superficial flow velocity (diameter ratio, αs=6.7)

    图  10   土基颗粒力链分布随表观渗流速度变化情况(粗细颗粒.粒径比αs=6.7)

    Figure  10.   Evolution of force chain in fine-particle layer with superficial flow velocity (diameter ratio, αs=6.7)

    表  1   基准渗流模拟所采用材料属性

    Table  1   Material properties in the benchmark of seepage flow

    颗粒属性流体属性
    颗粒密度ρs/(kg·m-3)滑动摩擦系数μr杨氏模量E/Pa回弹系数e泊松比ν 滚动摩擦系数μf密度ρf/(kg·m-3)动力黏度μf/(kg·m-1·s-1)
    26500.842×1070.90.20.2610001×10-3
    下载: 导出CSV

    表  2   基准渗流模拟相关设置

    Table  2   Computational settings in the benchmark of seepage flow

    计算设置任意解流设置全解流设置
    DEM时间步长ΔtDEM/sCFD时间步长ΔtCFD/s流体网格尺寸Lm/mm高斯权函数带宽bw/mm流体网格尺寸Lm/mm
    2×10-52×10-41.32, 0.8, 0.58.00.5
    下载: 导出CSV

    表  3   滤层-土基数值模型中的颗粒属性

    Table  3   Material properties in numerical simulations of seepage test

    参数数值参数数值
    砂颗粒密度ρs/(kg·m-3)2650玻璃-玻璃滑动摩擦μs_gg0.1545
    玻璃珠密度ρg/(kg·m-3)2450砂-玻璃滑动摩擦μs_sg0.3
    砂颗粒杨氏模量Es/Pa2×1010砂-砂滚动摩擦μr_ss0.26
    玻璃珠杨氏模量Eg/Pa5×1010玻璃-玻璃滚动摩擦μr_gg0.045
    砂颗粒泊松比νs 0.2砂-玻璃滚动摩擦μr_sg0.1
    玻璃珠泊松比νg 0.25砂颗粒回弹系数es0.9
    砂-砂滑动摩擦μs_ss0.84玻璃珠回弹系数eg0.9
    下载: 导出CSV

    表  4   滤层-土基数值模型中的流体属性

    Table  4   Computational settings in numerical simulations of seepage test

    密度ρf/(kg·m-3)动力黏度μf/(kg·m-1·s-1)DEM时间步长ΔtDEM/s
    10001×10-32×10-5
    下载: 导出CSV

    表  5   滤层-土基数值模型中的计算设置

    Table  5   Computational settings in numerical simulations of seepage test

    CFD时间步长ΔtCFD/s流体网格尺寸Lm/mm高斯权函数带宽bw/mm
    2×10-41, 0.53.0
    下载: 导出CSV
  • [1] 周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977-981. doi: 10.3321/j.issn:1000-4548.2007.07.004

    ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977-981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004

    [2]

    EL SHAMY U, ZEGHAL M, DOBRY R, et al. Micromechanical aspects of liquefaction-induced lateral spreading[J]. International Journal of Geomechanics, 2010, 10(5): 190-201. doi: 10.1061/(ASCE)GM.1943-5622.0000056

    [3]

    ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239: 248-258. doi: 10.1016/j.powtec.2013.02.003

    [4] 蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    [5] 王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    WANG Yin, AI Jun, YANG Qing. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance[J]. Rock and Soil Mechanics, 2017, 38(6): 1771-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    [6]

    HAGER A, KLOSS C, PIRKER S, et al. Parallel resolved open source CFD-DEM: method, validation and application[J]. The Journal of Computational Multiphase Flows, 2014, 6(1): 13-27. doi: 10.1260/1757-482X.6.1.13

    [7]

    WANG Z L, FAN J R, LUO K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles[J]. International Journal of Multiphase Flow, 2008, 34(3): 283-302. doi: 10.1016/j.ijmultiphaseflow.2007.10.004

    [8]

    ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.

    [9]

    TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. doi: 10.1016/0032-5910(93)85010-7

    [10]

    CHENG K, WANG Y, YANG Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils[J]. Computers and Geotechnics, 2018, 100: 30-51. doi: 10.1016/j.compgeo.2018.04.004

    [11]

    DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. doi: 10.1016/j.ces.2003.09.037

    [12]

    DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. doi: 10.1016/0301-9322(94)90011-6

    [13]

    WANG Y, ZHOU L X, WU Y, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape[J]. Powder Technology, 2018, 326: 379-392. doi: 10.1016/j.powtec.2017.12.004

    [14] 王胤, 周令新, 杨庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm

    WANG Yin, ZHOU Ling-xin, YANG Qing. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation[J]. Rock and Soil Mechanics, 2019, 40(5): 2009-2015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm

    [15]

    YANG Q, CHENG K, WANG Y, et al. Improvement of semi-resolved CFD-DEM model for seepage-induced fine-particle migration: Eliminate limitation on mesh refinement[J]. Computers and Geotechnics, 2019, 110: 1-18. doi: 10.1016/j.compgeo.2019.02.002

    [16]

    JASAK H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[D]. London: Imperial College, University of London, 1996.

    [17]

    ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65. doi: 10.1016/0021-9991(86)90099-9

    [18]

    SHIRGAONKAR A A, MACIVER M A, PATANKAR N A. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion[J]. Journal of Computational Physics, 2009, 228(7): 2366-2390.

    [19]

    KLOSS C, GONIVA C. LIGGGHTS - open source discrete element simulations of granular materials based on lammps[M]//Supplemental Proceedings. Hoboken: John Wiley & Sons, Inc., 2011: 781-788.

    [20]

    WELLER H. OpenFOAM: The open source CFD toolbox, Programmer’s Guide[EB/OL]. UK: CFD Direct Ltd, 2009, Http://www.openfoam.com.

图(10)  /  表(5)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  41
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2021-10-31

目录

    /

    返回文章
    返回